Perceptual and Artistic Principles for Effective Computer Depiction

Gestalt and Picture Organization

Fredo Durand
MIT- Lab for Computer Science

Grouping by color
Georgia O’Keeffe

Grouping, illusory contour & fig/gnd
Absolut

Context: Gestalt psychology
• [Palmer 99]
• Early 20th century
• Inspired by field theory in physics
• Holistic philosophy of vision
 – “Spontaneous” organization
 – Opposed to unconscious inference
• Has been integrated recently into modern framework

Context: Gestalt psychology
• Early 20th century
• Arnheim had a Gestalt psychology background
• Very popular in design
• Advertisement vs. art

Prägnanz
• Cornerstone of Gestalt
• “Goodness”
• “Simplest” possible figure or organization
• Things are organized spontaneously and assumed to be in the simplest configuration

• Has recently been related to information theory (simple in terms of amount of information required to encode it)
Plan
- Grouping
- Figure-ground
- Completion and illusory contours

Grouping
- “Similar” or “close” objects are perceived to belong to groups
- Spontaneous and powerful perceptual effect

Grouping
- By Proximity
- By Color
- By size

Grouping by synchronicity

Grouping by synchronicity
Grouping by synchronicity

Proximity is outweighed by region

Proximity is outweighed by connectedness

Task: Detect repetition of a shape in a sequence
- The repetition can be inside or across a group
- Slower when between groups (~0.7 vs. ~1.1s)

Repetition within group

Repetition across group

Repetition in neutral sequence

Redrawn after [Palmer 99]

Grouping effect

Grouping conflict
Grouping conflict

- Faster when within small oval

Redrawn after [Palmer 99]

Grouping in complex situations

- No quantitative rule yet!
- Very complex problem
- Too many parameters

Grouping and photo

Edward Weston

Grouping

- Grouping by proximity tells story

Grouping & Map Making

- Grouping provides efficient analysis

Grouping and ornament

- Repetition, rhythm
Plan

- Grouping
- Figure-ground
- Completion and illusory contours

Figure-ground

- What is in front (figure), and behind (ground)?
- There has to be one figure and one ground
- Related to occlusion and thus to depth
- Less attention is dedicated to the ground

Figure-ground

- The shape with the best “Prägnanz” is the figure
- Can be bimodal: we switch from one interpretation to the other
 - Visible on brain imagery
- But only one at a time

Figure-ground & familiarity

- Familiarity helps: We recognize a horse

Figure-ground pun

- Rubin vase
Figure-ground transition

- +grouping

Enhancing depth through contrast

Negative space

- The ground defines the negative space
- Usually overlooked
- Fundamental for balance
 - Also for typography

Closure & Negative space

- George Seurat
- Negative space are enclosed in the picture frame

Plan

- Grouping
- Figure-ground
- Completion and illusory contours

Continuation

- Lines are continued after junctions
- And after gaps
Continuation and Map-Making

Continuation and design
- El Lissitzky, *Self Portrait: The Constructor* 1924

Closure
- Closed shapes have better “Prägnanz”
- + continuation
- + illusory lines

Illusory contour
- An illusory contour is implied by continuation of the lines
- Related to figure ground
Illusory contours

- Kanizsa

![Kanizsa Illusory Contour](image)

Illusory contour

- Can be more effective

![Matisse Illusory Contour](image)

Illusory contour

- Familiarity helps

![Figure-ground and Illusory Contour](image)

Figure-ground and illusory contour

- We complete the occluded part with the simplest shape (best “Prägnanz”)
- Related to continuation and closure

![Visual completion](image)
Completion

- Magritte

- Marc Riboud
 - Completion is challenged

Summary

- Prägnanz (goodness, simple in terms of information)
- Grouping
- Figure-ground
- Completion

- As usual pictures can
 - Simplify
 - Challenge

History of science

- Initially, strong opposition between Gestalt and other theories
- Lack of experimental data
- Has been applied beyond its scope
- Has been taken too literally

- Now, has been integrated with other theories
- Experiments
- Computational models