

# **Topics**

### **Graph and Tree Visualization**

Tree Layout Graph Layout

### Goals

Overview of layout approaches and their strengths and weaknesses
Insight into implementation techniques



# **Graphs and Trees**

### Graphs

Model relations among data Nodes and edges



### Trees

Graphs with hierarchical structure

· Connected graph with N-1 edges

Nodes as parents and children



# **Spatial Layout**

The primary concern of graph drawing is the spatial arrangement of nodes and edges

Often (but not always) the goal is to effectively depict the graph structure

- · Connectivity, path-following
- Network distance
- Clustering
- · Ordering (e.g., hierarchy level)

# Tree Layout

# Applications of Tree / Graph Layout

Tournaments

Organization Charts

Genealogy

Diagramming (e.g., Visio)

Biological Interactions (Genes, Proteins)

Computer Networks

Social Networks

Simulation and Modeling

Integrated Circuit Design

### Tree Visualization

### Indentation

· Linear list, indentation encodes depth

### Node-Link diagrams

· Nodes connected by lines/curves

### Enclosure diagrams

· Represent hierarchy by enclosure

### Layering

· Relative position and alignment

Tree layout is fast: O(n) or O(n log n), enabling real-time layout for interaction.





### **Node-Link Diagrams**

Nodes are distributed in space, connected by straight or curved lines

Typical approach is to use 2D space to break apart breadth and depth

Often space is used to communicate hierarchical orientation (typically towards authority or generality)





# Reingold & Tilford's Tidier Layout



Goal: make smarter use of space, maximize density and symmetry.

Originally for binary trees, extended by Walker to cover general case.

This was corrected by Buchheim et al to achieve a linear time algorithm.

# Reingold-Tilford Layout

### Design concerns

Clearly encode depth level

No edge crossings

Isomorphic subtrees drawn identically

Ordering and symmetry preserved

Compact layout (don't waste space)



# Reingold-Tilford Algorithm



# Reingold-Tilford Algorithm

















































# Reingold-Tilford Algorithm The state of the



# Reingold-Tilford Algorithm Linear algorithm - starts with bottom-up pass of the tree

Y-coord by depth, arbitrary starting X-coord

Merge left and right subtrees

- · Shift right as close as possible to left
  - · Computed efficiently by maintaining subtree contours
- · "Shifts" in position saved for each node as visited
- · Parent nodes are centered above their children

Top-down pass for assignment of final positions

· Sum of initial layout and aggregated shifts



# Radial Layout



Node-link diagram in polar co-ordinates.

Radius encodes depth, with root in the center.

Angular sectors assigned to subtrees (typically uses recursive approach).

Reingold-Tilford approach can also be applied here.





# MC Escher, Circle Limit IV

**Problems with Node-Link Diagrams** 

Tree breadth often grows exponentially

Even with tidier layout, quickly run out of space

Scale

Filtering

Zooming

Aggregation

Focus+Context

Possible solutions

Scrolling or Panning















| Lay     | /ere                 | a Ir       | <b>'ee</b> | 1 1K2          |             | T. D. C.    |                |               |  |  |  |  |  |  |
|---------|----------------------|------------|------------|----------------|-------------|-------------|----------------|---------------|--|--|--|--|--|--|
|         | Layered Tree Drawing |            |            |                |             |             |                |               |  |  |  |  |  |  |
|         |                      | Coffee     |            |                | Espresso    |             |                |               |  |  |  |  |  |  |
|         |                      | Amaretto   | Columbian  | Decaf Irish Cr | Caffe Latte | Caffe Mocha | Decaf Espresso | Regular Espre |  |  |  |  |  |  |
| Central | Colorado             | #01<br>771 | 1 1        |                |             |             | 1              |               |  |  |  |  |  |  |
|         | Ilinois              |            | 180        |                |             | 1818        | 100            |               |  |  |  |  |  |  |
|         | Iowa                 |            |            |                |             | 1           | 8              |               |  |  |  |  |  |  |
|         | Missouri             |            | 1          | 8              |             |             | 1              |               |  |  |  |  |  |  |
|         | Ohio                 | 1          | 1          |                |             | - 18        |                |               |  |  |  |  |  |  |
|         | Wisconsin            |            |            |                |             |             |                |               |  |  |  |  |  |  |
| East    | Connecticut          |            | 133        |                |             |             | 1              |               |  |  |  |  |  |  |
|         | Florida              |            | Ħ          | EF.            |             |             | 8              |               |  |  |  |  |  |  |
|         | Massachusetts        |            | 180192180  |                |             |             |                | 121           |  |  |  |  |  |  |
|         | New Hamps            | 1          | 1          |                |             |             |                |               |  |  |  |  |  |  |
|         | New York             |            | HERE       |                |             | 1010        |                | BRB           |  |  |  |  |  |  |
| South   | Louisiana            |            | ž.         | 8              |             | 8           | ğ              |               |  |  |  |  |  |  |
|         | New Mexico           |            | 1          | - 6            |             |             |                |               |  |  |  |  |  |  |
|         | Oklahoma             |            |            |                | 18          | 1           |                |               |  |  |  |  |  |  |
|         | Texas                |            | 1883       | EI .           | 1           | 188         | 88             |               |  |  |  |  |  |  |
| West    | California           | - 1        | 10000      | HII            | 801         | 1           | 1000           |               |  |  |  |  |  |  |
|         | Nevada               |            |            |                |             | 1           |                |               |  |  |  |  |  |  |
|         | Oregon               | 1          |            |                |             |             | - 18           |               |  |  |  |  |  |  |
|         | Utah                 | 1          | 1          | 1              | ä           | 1           | 8              |               |  |  |  |  |  |  |
|         | Washington           |            | 8          |                |             |             | 8              |               |  |  |  |  |  |  |
|         |                      | au a ax    |            |                |             | 20K DC 20K  | 2017 38 1301   |               |  |  |  |  |  |  |
|         |                      |            |            |                |             |             |                |               |  |  |  |  |  |  |



# Administrivia

# Final Project

### Design a new visualization system or technique

Many options: new system, interaction technique, design study

6-8 page paper in conference paper format

2 Presentations: in-class report & final poster session

### Schedule

Project Proposal: **Tuesday, Nov 15** (end of dαy)

In-Class Presentation: Tuesday, Nov 29

Poster Presentation: Tuesday, Dec 13 (5-7pm)

Final Papers: Thursday, Dec 15 (5pm)

### Logistics

Groups of up to 4 people, graded individually Clearly report responsibilities of each member

# Final Project Ideas

### Read the Final Project Wiki Page!

Also follow the links for suggested projects. A number of domain experts have provided project ideas and are excited to collaborate with you.

We **strongly** encourage you to consider working in a partnership with a domain expert, especially if you have difficulty formulating a problem-focused project idea.

Unsure? Come to office hours or schedule an appointment to discuss project ideas.

# Final Project Proposal

### **Deliverables**

Form project group (1-4 people)

Create project wiki page

Post project abstract (1-2 paragraphs)

Should clearly state the problem, relevance & planned solution

Start your related work search now to inform your proposal

**Due Tues Nov 15** (by end of day)

# Graph Layout

# **Approaches to Graph Drawing**

### **Direct Calculation using Graph Structure**

Tree layout on spanning tree Hierarchical layout Adjacency matrix layout

### Optimization-based Layout

Constraint satisfaction Force-directed layout

### Attribute-Driven Layout

Layout using data attributes, not linkage

### **Spanning Tree Layout**

Many graphs are tree-like or have useful spanning trees

· Websites. Social Networks

Use tree layout on spanning tree of graph

- · Trees created by BFS / DFS
- Min/max spanning trees

Fast tree layouts allow graph layouts to be recalculated at interactive rates

Heuristics may further improve layout





















# **Optimization Techniques**

Treat layout as an optimization problem

- Define layout using an energy model and/or a set of constraints: equations the layout should try to obey
- · Use optimization algorithms to solve

Regularly used for undirected graphs

· Force-Directed Layout most common

We can introduce directional constraints

- · DiG-CoLα (Di-Graph Constrained Optimization Layout) [Dwyer 05]
- Iterative constraint relaxation



# Force-Directed Layout

Nodes = charged particles  $F = G^* m_1^* m_2 / (x_i - x_j)^2$ 

with air resistance  $F = -b * v_i$ 

Edges = springs  $F = -k * (x_i - x_i - L)$ 

Repeatedly calculate forces, update node positions

- · Naïve approach O(N²)
- · Speed up to O(N log N) using quadtree or k-d tree
- · Numerical integration of forces at each time step



### **Constrained Optimization Layout**

Minimize stress function

stress(X) = 
$$\sum_{i < j} w_{ij} (\|X_i - X_j\| - d_{ij})^2$$

- · X: node positions, d: optimal edge length,
- · w: normalization constants
- · Use global (majorization) or localized (gradient descent) optimization
- $\rightarrow$  Says: Try to place nodes  $d_{ii}$  apart

Add hierarchy ordering constraints

$$E_{H}(y) = \Sigma_{(i,j) \in E} (y_i - y_j - \delta_{ij})^2$$

- · y: node y-coordinates
- $\delta$ : edge direction (e.g., 1 for i $\rightarrow$ j, 0 for undirected)
- $\rightarrow$  Says: If *i* points to *j*, it should have a lower y-value





### **Iterative Constraint Relaxation**

Quadratic programming is complex to code and computationally costly. Is there a simpler way?

Iteratively relax each constraint [Dwyer 09]

Given a constraint (e.g.,  $|x_i - x_i| = 5$ )

Simply push the nodes to satisfy

Each relaxation may clobber prior results

This typically (miraculously?) converges quickly and enables expressive constraints

# **Attribute-Driven Layout**

Large node-link diagrams get messy!
Is there additional structure we can exploit?

Idea: Use data attributes to perform layout

• e.g., scatter plot based on node values

Dynamic queries and/or brushing can be used to explore connectivity















# Limitations of PivotGraph

Only 2 variables (no nesting as in Tableau) Doesn't support continuous variables Multivariate edges?

Hierarchical Edge Bundling









