CS448B :: 11 Oct 2011
Multi-Dimensional Vis

Jeffrey Heer Stanford University

Last Time: Exploratory Data Analysis

Summary Statistics
 $u_{x}=9.0 \quad \sigma_{x}=3.317$

$u_{\mathrm{Y}}=7.5 \quad \sigma_{\mathrm{Y}}=2.03$
Linear Regression
$Y=3+0.5 X$
Linear Regress
$Y=3+0.5 X$
$\mathrm{R}^{2}=0.67$

Antiolotic Effectiveness				
Table 1: Burtin's data. Bacteria		Antibiotic		
	Penicillin	Streptomycin	Neomycin	Gram Staining
Aerobacter aerogenes	870	1	1.6	negative
Brucella abortus	1	2	0.02	negative
Brucella anthracis	0.001	0.01	0.007	positive
Diplococcus pneumoniae	0.005	11	10	positive
Escherichia coli	100	0.4	0.1	negative
Klebsiella pneumoniae	850	1.2	1	negative
Mycobacterium tuberculosis	800	5	2	negative
Proteus vulgaris	3	0.1	0.1	negative
Pseudomonas aeruginosa	850	2	0.4	negative
Salmonella (Eberthella) tophosa	1	0.4	0.008	negative
Salmonella schottmuelleri	10	0.8	0.09	negative
Staphylococcus albus	0.007	0.1	0.001	positive
Staphylococcus aureus	0.03	0.03	0.001	positive
Streptococcus fecalis	1	1	0.1	positive
Streptococcus hemolyticus	0.001	14	10	positive
Streptococcus viridans	0.005	10	40	positive

Will Burtin, 1951

How do the drugs compare?

How do the bacteria group w.r.t. resistance?
Do different drugs correlate?
Wainer \& Lysen

Transforming data

How well does the curve fit data?

	[Cleveland 85]

Multiple Plotting Options

Plot model in data space
Plot data in model space

[Cleveland 85]

Plot the Residuals

Plot vertical distance from best fit curve
Residual graph shows accuracy of fit

[Cleveland 85]

Choropleth maps of cancer deaths in Texas.
One plot shows a real data sets. The others are simulated under the null hypothesis of spatial independence.
Can you spot the real data? If so, you have some evidence of spatial dependence in the data.

Multidimensional Visualization

Visual Encoding Variables

Position
Length
Area
Volume
Value
Texture
Color
Orientation
Shape
~8 dimensions?

les Variables de separation des images gran a 目 目 couteur
orientation
ORME

Example: Coffee Sales

Sales figures for a fictional coffee chain:

Sales	Q-Ratio
Profit	Q-Ratio
Marketing	Q-Ratio
Product Type	N \{Coffee, Espresso, Herbal Tea, Tea\}
Market	N \{Central, East, South, West $\}$

comparison across multiple plots.
Typically nominal or ordinal variables are used as dimensions for subdivision.

Separation: Small Multiples

Scatterplot Matrix (SPLOM)

Multiple Coordinated Views

Linking Assists to Positions

Principal Component Analysis

Chernoff Faces (1973)

Insight: We have evolved a
sophisticated ability to
interpret facial expression.
Idea: Map data variables to facial features.

Question: Do we process facial features in an uncorrelated way? (i.e., are they separable?)

This is just one example of $n \mathrm{D}$ "glyphs"

Visualizing Multiple Dimensions

Strategies

- Avoid "over-encoding"
- Use space and small multiples intelligently
- Reduce the problem space
- Use interaction to generate relevant views

There is rarely a single visualization that answers all questions. Instead, the ability to generate appropriate visualizations quickly is key.

Parallel Coordinates

Parallel Coordinates [Inselberg]

Parallel Coordinates [Inselberg]

Parallel Coordinates

Inselberg's Principles

1. Do not let the picture scare you
2. Understand your objectives

- Use them to obtain visual cues

3. Carefully scrutinize the picture
4. Test your assumptions, especially
the "I am really sure of's"
5. You can't be unlucky all the time!

Each line represents a tuple (e.g., VLSI batch)
Filtered below for high values of X_{1} and X_{2}

Figure 2: The batches high in Yield, $X 1$, and Quality, $X 2$.

Look for batches with nearly zero defects (9/10) Most of these have low yields \rightarrow defects OK.

Notice that X 6 behaves differently.
Allow 2 defects, including $\mathrm{X} 6 \rightarrow$ best batches

Radar Plot / Star Graph

"Parallel" dimensions in polar coordinate space Best if same units apply to each axis

Polaris

Research at Stanford by Stolte, Tang, and Hanrahan.

Tableau

Data Set Schema

Year (Qi)

Candidate Code (N)
Candidate Name (N)
Incumbent / Challenger / Open-Seat (N)
Party Code (N) [1=Dem,2=Rep,3=Other]
Party Name (N)
Total Receipts (Qr)
State (N)
District (N)
This is a subset of the larger data set available from the FEC

Tableau Demo

The dataset:
Federal Elections Commission Receipts
Every Congressional Candidate from 1996 to 2002
4 Election Cycles
9216 Candidacies

Hypotheses?

What might we learn from this data?

- ??

Hypotheses?

What might we learn from this data?
Correlation between receipts and winners?
Tableau Demo
Do receipts increase over time?
Which states spend the most?
Which party spends the most?
Margin of victory vs. amount spent?
Amount spent between competitors?

Assignment 2: Exploratory Data Analysis

Polaris/Tableau Approach

Use visualization software (Tableau) to form \& answer questions
First steps:
Step 1: Pick domain \& data
Step 2: Pose questions
Step 3: Profile the data
Iterate as needed
Create visualizations

- Interact with data

Refine your questions
Make wiki notebook

Insight: can simultaneously specify both database queries and visualization

Choose data, then visualization, not vice versa
Use smart defaults for visual encodings
More recently: automate visualization design

Keep record of your analysis
Prepare a final graphic and caption
Due by end-of-day Tuesday, October 18

Specifying Table Configurations

Operands are the database fields
Each operand interpreted as a set $\{.$.
Quantitative and Ordinal fields treated differently
Three operators:
concatenation (+)
cross product (\mathbf{x})
nest (/)

Concatenation (+) Operator

Ordered union of set interpretations
Quarter + Product Type
$=\{(Q t r 1),(Q t r 2),(Q t r 3),(Q t r 4)\}+\{($ Coffee $),($ Espresso $)\}$
$=\{(Q t r 1),(Q t r 2),(Q t r 3),(Q t r 4),($ Coffee),(Espresso)\}

Qtr1	Qlr2	Qlr3	Qlr-4	Colfee	Esprosso
48	59	57	53	151	21

Profit + Sales $=\{($ Profit[-310,620]),(Sales[0,1000] $)\}$

Table Algebra: Operands

Ordinal fields: interpret domain as a set that partitions table into rows and columns.
Quarter $=\{(Q \operatorname{tr1}),(Q t r 2),(Q \operatorname{tr3}),(Q \operatorname{tr} 4)\} \rightarrow$

Qtr1	Qtr2	Qtr3	Qtr4
95892	101760	105282	98225

Quantitative fields: treat domain as single element set and encode spatially as axes:
Profit $=\{($ Profit[-410,650] $)\} \rightarrow$

Cross (x) Operator

Cross-product of set interpretations
Quarter x Product Type
= \{(Qtr1,Coffee), (Qtr1, Tea), (Qtr2, Coffee), (Qtr2, Tea), (Qtr3, Coffee), (Qtr3, Tea), (Qtr4, Coffee), (Qtr4,Tea)\}

Product Type \times Profit $=$

Nest (/) Operator

Cross-product filtered by existing records
Quarter x Month
creates twelve entries for each quarter. i.e., (Qtrı, December)

Quarter / Month
creates three entries per quarter based on tuples in database (not semantics)

Ordinal - Ordinal

State	Product Type			
	Coffee	Espresso	Herbal Tea	Tea
Colorado	\bullet	-	\bullet	-
Connecticut	-	-	\bullet	-
Florida	\bullet	\bullet	\bullet	-
Ilinols	\bullet	\bullet	\bullet	-
Iowa	-	-	\bullet	\bullet
Louisiana	-	\bullet	-	
Massachusetts	\bullet	\bullet	-	-
Missouri	-	-	,	-
Nevada	-	-	-	\bullet
New Hampshire	-	-	-	-
New Mexico	-	-	-	
New York	\bullet	\bullet	\bullet	\bullet
Ohio	\bullet	\bullet	-	\bullet
Oklahoma	-	\bullet	-	
Oregon	-	\bullet	-	-
Texas	\bullet	\bullet	-	
Utan	\bullet	\bullet	-	-
Washington	\bullet	\bullet	\bullet	\bullet
Wisconsin	-	-	-	-

Ordinal - Quantitative

Visualizing Multiple Dimensions

Strategies

- Start by visualizing individual dimensions
- Avoid "over-encoding"
- Use space and small multiples intelligently
- Use interaction to generate relevant views

There is rarely a single visualization that answers all questions. Instead, the ability to generate appropriate visualizations quickly is key.

