
Programming

MICHAEL BERNSTEIN 
CS 376



Reminder:  
project fair II  
Monday after 
Thanksgiving



A Small Matter of Programming
� Software engineering is a highly complex task, a microcosm of 

many challenges in HCI
� Making software engineering more accessible could empower 

millions to customize applications and write programs

3



Research agenda
� Understand the challenges in programming
� Design more effective software engineering interfaces
� Aid novices in learning to program or writing programs
� Abstract best practices into toolkits

4



Understanding 
programmers 



Information Needs in Programming 
[Ko, DeLine and Venolia, ICSE ’07]

� Observed 17 developers in 90-minute sessions and transcribed 
all activities

� Thematic coding of information needs
� Writing code e.g., how do I use this method?
� Submitting a change e.g., which files are included?
� Triaging bugs e.g., is the problem worth fixing?
� Reproducing failure e.g., what are failure conditions?
� Understanding execution e.g., what caused this behavior?
� Design e.g., why is the code implemented this way?
� Awareness e.g., what are my collaborators working on?

� Most common need: collaborator awareness
6



Obstacles to learning APIs 
[Robillard and DeLine, Empir. Software Engineering 2011]

� Survey and in-person interviews, combined reaching 440 
professional software engineers

� Biggest challenge: inadequate documentation
� API intent: how it was intended to be used
� “Nowhere in there does it say, and we intended to be used for a few 

graphics of small size because the memory footprint is going to be 
this.”

� Code examples: snippets, tutorials, working apps
� Penetrability: how much detail and implementation to expose?

7



Web foraging and programming 
[Brandt et al., CHI ’09]

� Laboratory study: ask programmers to implement a chat room 
in PHP

� This paper articulated how programmers make heavy use of the 
web
� JIT learning of new skills
� Clarifying existing skills
� Reminding themselves of details

� Average participant spent 19% of their programming time on 
the web

8



Software 
engineering 
interfaces



Goals of software engineering 
interface research
� Design a better toolbench, produce a better programmer
� This research typically assumes that the programming language 

is static, but the interface of the IDE can be molded

10



Example-centric programming 
[Brandt et al., CHI ’10]

� Close the loop between the 
development environment 
and web search

� Autocomplete code via web 
examples

11



12



Asking ‘why’ questions of code 
[Ko and Myers CHI ’04, ICSE ’09]

� Debugging problems 
often reduce to “why” 
questions

� Analyze program 
traces to answer them

13



Missing user-facing feedback 
[Ko and Zhang, CHI ’11]

� Usability heuristic: all 
user inputs should 
produce some form 
of feedback

� Statically analyze 
code to identify user 
inputs that produce 
no feedback

14



Keyword programming 
[Little and Miller, UIST ’06, ASE ’09]

� Macro programming is difficult to learn
� Allow keyword search over an API:  

e.g., “click search  
button” or  
“left margin  
2 inches”

15



Visual layout of code snippets 
[Bragdon et al., CHI ’10]

� Most engineering time is spent navigating across multiple 
related code snippets

� So, design for many small windows into files

16



17



Debugging with runtime info 
[Lieber, Brandt, and Miller, CHI 2014]

18



Languages that learn from crowds 
[Fast and Bernstein, UIST ’16]

� If your functions sent 
back information to a 
central community 
server, could they…
� Recover from crashes?
� Auto-optimize?
� Test themselves?

19



Learning 
programming



Goals of programming education
� Make programming accessible to new populations: children, 

scripters, interested amateurs
� Tools and innovations depend on the population

21



Logo: programming for children 
[Papert ’93]

� Constructionist learning: 
learning happens most 
effectively when people are 
making tangible objects

� Lego Mindstorms followed 
this mold and was named 
after it

22



Scratch: kids remix and create 
[Resnick et al., CACM ’09]

� Social: upload and remix others’ programs
� All programming has been done online. This data has led to many 

papers on understanding notions of authorship and creative 
remixing.

23



24



Online python tutor 
[Guo, SIGCSE ’13]

� Embeddable Python data structure visualization
� Over 200,000 users and a dozen universities using it

25



Codeopticon 
[Guo, UIST ‘15] 26



Programming by 
demonstration



Goals of PBD
� Teach a computer to program simply by demonstrating what 

should be done
� Challenges
� There is an infinite, and hugely branching, space of programs that might 

be inferred
� Inferred macros can be extremely brittle

28



Recall: EAGER 
[Cypher, CHI ’91]

� Infer a macro by 
watching the user’s 
behavior

29



Simultaneous structured editing 
[Miller and Myers, USENIX ’01]

� Utilize lightweight 
structure in text

� Today, versions of 
this exist in 
Sublime Text

30



Toolkits



Threshold/Ceiling Tradeoff 
[Myers, Hudson and Pausch, TOCHI 2000]

32

Difficulty 
of use

Sophistication of what can be created

C++

Balsamiq

Web

Server-side

Client-side



Research agenda: toolkits
� Crystallize and formalize a perspective on a difficult engineering 

problem
� If successful, shift the entire programming practice for the area

33



Sikuli: programming with screenshots 
[Yeh, Chang, and Miller, UIST ’09]

� Visual 
template 
search in 
desktop 
scripting



Recall: Chickenfoot 
[Bolin et al., UIST 2008]

� Lower the threshold to writing programs
� Allow users with little programming skill to author behaviors
� e.g., Chickenfoot

35

isbn	=	find('number	just	after	isbn')	
with	(fetch('libraries.mit.edu'))	{	
pick('Keywords’);	
enter(isbn)	
click('Search')	
link=find('link	just	after	Location')	

}	
//	back	to	Amazon	
if	(link.hasMatch)	{	
insert(before('first	rule	after	"Buying"'),	
link.html)	

}



Research agenda: 
HCI and programming
� Understand the challenges in programming
� Design more effective software engineering interfaces
� Aid novices in learning to program or writing programs
� Abstract best practices into toolkits

36



Discussion rooms

37

Rotation Littlefield 107 Littlefield 103

a 12 34

b 24 13

c 14 23

d 34 12

e 13 24

f 23 14


