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From its beginning, the technology of personal 
workstations has been driven by visions of a future in which 
people would work in intimate partnership with computer 
systems on significant intellectual tasks. These visions have 
been expressed in various forms: Memex (Bush, 1945), 
Man-Machine Symbiosis (Licklider, 1960), NLS (Engelbart, 
1963), Dynabook (Kay, 1977), and others. 

The tight coupling between human and computer 
required by these visions necessitated advances in the ways 
humans and computers interact. These advances have 
slowly begun to accumulate into what might be called a user 
technology. This user technology includes hardware and 
software techniques for building effective user interfaces: 
bitmapped displays, menus, pointing devices, "modeless" 
command languages, animation, and interface metaphors. 
But it must include a technical understanding of the user 
himself and of the nature of human-computer interaction. 
This latter part, the scientific base of user technology, is 
necessary in order to understand why interaction techniques 
are (or are not) successful, to help us invent new techniques, 
and to pave the way for machines that aid humans in 
performing significant intellectual tasks. 

In this paper, we trace some of the history of our 
understanding of users and their interaction with 
workstations--the personal part of personal workstations. 
In keeping with the spirit of other papers at this conference, 
we have centered this review around our own experiences, 
perspectives, and work and have not attempted a complete 
history of the field. In concentrating on our own work, we 
do not wish to mimimize the importance of others' work; 
we simply want to tell our own story. Our focus is on what 
we have learned about users in our years of studying them 
and how we see our findings relating to the original visions 
of the personal workstation. 
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1. The  Vision of an Applied Use r  Psychology 

The opportunity to tackle a science of the user brought 
us to PARC in 1974 (collaborating with Allen Newell, as 
consultant). As other PARC researchers were beginning to 
pursue the vision of highly graphic, interactive, 
network-based personal workstations, we were following a 
vision of our own. The idea was to draw concepts from 
cognitive psychology and artificial intelligence to create an 
applied cognitive science of the user. We called our project 
the Applied hi formation-processing Psychology Project 
(ALP). A ]971 memo by Allen Ncwell proposing this 
project to PARC stated the basic argument this way: 

(I) There is emerging a psychology of cognitive 
behavior that will permit calculation of behavior 
in new situations and with new humans . . . .  

(2) Several of the tasks that are central to the 
activities of computing--programming, 
debugging, etc.--are tasks that appear to be 
within the early scope of this emerging theory. 

(3) Computer science in general is extremely 
one-sided (for understandable reasons) in the 
treatment of its phenomena: almost no effort goes 
into understanding the nature of the human user. 

(4) There is a substantial payoff (in dollars) to be had 
by really designing systems with detailed 
understanding of the way the human must 
process the information attendant thereto. 

In 1974, we were in the position of having to create a 
new field. Psychological theories and methodologies held 
the promise of being able to represent and manage complex 
cognitive tasks, but the only body of research pertaining to 
human-computer interaction was in the field of human 
factors, where studies were largely empirical and evaluative, 
concentrating mostly on sensory-motor questions like the 
best shape for a switch. Human-computer interaction, 
involving two active agents each capable of initiating an 
exchange of information, inherently involves human 
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cognitive processing. Our vision was to create a science of  
the user rooted in cognitive theory. But we also wanted the 
science to be practical, providing the system designer with 
the conceptual tools to think about the key characteristics of  
the user and the calculational tools to take account of  the 
user's behavior. 

To simplify a rather complex history for the purposes 
of this paper, we will narrate just a few strands of  what 
unfolded. Each strand is organized around a particular 
aspect of the interface between the user, the system, and the 
task. The strands are organized into a sequence of  
ever-broader interfaces, from the physical interaction of  the 
user with devices and displays to the symbiotic interaction 
of  the user with the system while grappling with complex 
intellectual tasks-- that  is, from pointing to pondering: 

The physical interface: The user interacts 
with a system by means of  physical input 
devices, such as a keyboard and a mouse, and 
output devices, such as a high-quality 
graphical display. 

The cognitive hzterface: The user has certain 
characteristics as an information processor, 
such as a limited working memory, that 
together with the goals he is trying to achieve 
determine his behavior. 

The conceptual #lterface: The computer 
system is also a complex information 
processing mechanism, and the the user 
needs to have some kind of  mental model of  
it in order to effectively interact with it. 

The task interface." Systems are designed to 
help their users do tasks, not only small, 
routine tasks, but also larger, difficult 
intellectual tasks that are the object of  the 
grand visions of  personal workstations. 

The story within each strand of  our work is chronological; 
but the first three strands, representing our previous work, 
overlap in time. The last strand represents our current 
work. 

2. The Physical Interface: Pointing 

Bill English, who had among other thing engineered 
and built the mouse for Doug Engelbart (English, 
Engelbart, and Berman, 1967), was one of  the people who 
migrated to PARC when it was founded. We worked for 
English when we first came to PARC. Engelbart and 
English had always considered the mouse to be an interim 
device, and English wanted to see if  it was possible to invent 
other devices that would improve on its speed. In 
particular, he was interested in whether one could put  a key 
on the keyboard that would sense force and direction 
without requiring the user to remove his hands from the 
keyboard. He had a number of  devices built, and we 
helped design an experiment to test them. The results 
(Figure 1) showed that none of  the devices tested improved 
on the mouse either for speed or for error rate (Card, 
English, & Burr, 1978). 

This was a typical human factors experiment: we 
compared a set of  systems to determine which one 
performed best. But this direct empirical comparison 
bctween devices was just the sort of  methodology of  human 
factors testing that we wanted to improve: we wanted to 
understand the reasons why the results came out the way 
they did. We therefore made mathematical models of  each 
device and tested them against the data until we found 
models that fit. The model for the mouse was particularly 
instructive. The mouse was best modeled by a version of  
Fitts's Law: 

Movement Time = Constant + .1 log2(D/S + .05) sec, 

Device 

Movement Time for Non-Error Trials Error Rate 

Trials Homin 9 Time Positionin 9 Time Total Time 
N M SD .~f SD J,f SD %f $1) 

(see) (see) (see) (see) (see) (see) 

Mouse 1973 .36 .13 1.29 .42 1.66 .48 5% 22% 

Joystick 1869 .26 .11 1.57 .54 1.83 .57 11% 31% 

Step Keys 1813 .21 .30 2.31 1.52 2.51 1.64 13% 33% 

Text Keys 1877 ,32 .61 1.95 1.30 2.26 1.70 9% 28% 

F igure  1. Ove ra l l  poin t ing  t imes  for  all d e v i c e s .  Homing Time is the time 
to move the hand from the keyboard to the device, Positioning Time is the time 
to move the cursor to the target. Times are based on a standardized set of 
distances and target widths. Averages are computed on the basis of four 
users x 600 tr ials/users. Reprinted from Card, Moran, & Newe/I (1983, Fig. 
7.4) with the permission of Lawrence Erlbaum Associates, Inc. 
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where D is the distance the hand moves to the target and S 
is the target width (see Figure 2). The significance of  this 
result is that this is the same law that describes movement 
time for the hand alone, with about the same constant of  
proportionality. The limiting factor in moving the mouse, 
therefore, is not in the mouse, but in the eye-hand 
coordinate system itself. That, in turn, means the mouse is 
nearly optimal, at least with respect to the set of  muscles 
used. Therefore, designing a device that is faster than the 
mouse would be difficult. 

Here was a prototypical example of  the kind of  theory 
we wanted to build--a model precise enough to enable 
designers to perform back-of-the-envelope calculations, a 
model that identified key constraints in the design space for 
pointing devices. With this model we could be sure that the 
data giving comparisons among devices would probably 
generalize to new situations, because we knew the main 
factors that governed the results. Furthermore, the model 
provided guidance for interface designers: make distant 
buttons large, for example. These studies were heavily used 
in the debate within Xerox that led to the decision to depart 
from tradition by including a mouse with the new Star 
product. 

3. T h e  Cogni t ive  In te r face :  Cogni t ive  Skil l  

The Model Human Processor 

An interesting result of  the mouse study was the way 
an evaluation of  pointing devices led to a consideration of  
human information processing charactcristics. This 
experience pointed to the need for an engineering model of  
users that would summarize such characteristics. We knew 
of many phenomena scattered in the literature of  
psychology, such as Fitts's law, that would be helpful for 
system design. 

To someone who is not a specialist, such as a designer, 
this literature appears disorganized and contradictory. 
Psychologists love to split hairs and find small 
contradictions in published models. The robust but 
approximate generalizations that might be made to work for 
engineering tend to get trampled in the debates. Although 
we had the notion of such a model from about 1974, it 
wasn't until 1982, when we were nearing the completion of  
our book, that we were able to formulate it. The model, 
called the Model Human Processor, was inspired by the 
processors, memories, and switches (PMS) notation of  Bell 
and Newell (1971) for describing the architecture of  
computing systems. It was a simplified architecture of  the 
user, described in terms of  three processors, four memories, 
19 parameters of  these, and 10 principles of  operation 
(Figure3). 

As an example of  the sort of  calculation that can be 
done with the Model Human Processor, consider the ease 
where a programmer is programming a video game version 
of billiards. He needs to know how long he has after the 
collision of  two balls to compute the balls new trajectory 
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Tp., = 1.03 + .096 log 2 (D/S + .5) 
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F i g u r e  2.  P o s i t i o n i n g  t i m e  fo r  t h e  m o u s e  as a funct ion of  
F i t t s ' s  I n d e x  of  Dif f icul ty.  The fit of positioning time data to the 
straight line in the figure shows that time for the mouse is 
governed by Fitts's Law (is proportional to Fitts's Index of 
Difficulty). The constant of proportionality, .096 sec/bit (= 10.4 
bits/sec), is approximately the same value" as for pointing with the 
hand alone. Reprinted from Card, Moran, & Newell (1983, Fig. 7.8) 
with the permission of Lawrence Erlbaum Associates, Inc. 

before the illusion of  causality breaks down. The Model 
Human Processor tells us that every event that occurs 
within 100 msec will be perceived as a single event, so a 
rough estimate is 100 msec. But it also recognizes that 
second-order phenomena can change this number, so it also 
supplies a range of  uncertainty for this number (in this 
instance, 50 to 200 msec). 

In this case, we can say that if the programmer can 
make the balls move within the 50 msec lower bound for 
this parameter, then it is pretty certain that users will 
perceive the collision as the cause of  the balls change in 
direction, regardless of  secondary effects such as brightness 
or contrast ratio of  the screen. 

The Model Human Processor can be used to compute 
predictions about human performance: how fast people can 
read, how-fast they can scribble, the effect of  different 
abbreviation schemes on memory error, and so on. 
Derivations based on the Model Human Processor were 
used to set the maximum velocity of  the mouse on the 
workstation for the Xerox Star. 

Text Editing and Cognitive Skill 

The Model Human Processor also contains, as one o f  
its principles of  operation, Herbert Simon's bounded 
rationality principle. Our version of  this principle may be 
stated: 

A person acts so as to attain his goals through 
rational action, given the structure of  the task; his 
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inputs of information, and boutided by limitations 
upon his knowledge and processing ability. (Card, 
Moran, & Newell, 1983). 

That is, in order to predict a person's behavior, one needs to 
analyze the task he is trying to do, because the person will 
simply do what is rational to accomplish the task, 
constrained by limitations in his knowledge and ability to 
process information. Studies of  how people solve problems 
had shown (Newell & Simon, 1972) that their behavior 
could be modeled as a search through a space of  states of  
the problem, a problem space. We expected that in studies 

of  human-computer interaction we would find users 
searching through problem spaces to accomplish goals, 
trying various solutions, backing off and taking other tacks 
when they ran into trouble. 

Two early decisions we made led us to results which 
were contrary to our expectations. Although we had come 
to PARC initially with the intention of  studying computer 
programming, we decided once we arrived that there were 
strategic advantages to studying text editing. A second, 
tactical, decision was to work with expert subjects rather 
than novices, in order to have more stable behavior to 
analyze. Further, to make sure that all our subjects had the 

/ z U M  - ~ .  

KLT M = Semantic 

Figure 3. The Model Human Processor memories and processors. Depicted 
schematically in the figure are the memories, processors, and constants used for making 
simple computations. The basic architecture of the model can be summarized thus: Sensory 
information flows into Working Memory through the Perceptual Processor. Working Memory 
consists of activated chunks in Long-Term Memory. The basic principle of operation of the 
Model Human Processor is the Recognize-Act Cycle of the Cognitive Processor: On each 
cycle of the Cognitive Processor, the contents of Working Memory initiate actions 
associatively linked to them in Long-Term Memory; these actions in turn modify the contents 
of Working Memory. The Motor Processor is set in motion through activiation of chunks in 
Working Memory. 

Predictions are made using time constants from the figure and a set of associated 
Principles of Operation: (P0) The Recognize-Act cycle of the Cognitive Processor; (P1) The 
Variable Perceptual Processor Rate Principle; (P2) The Encoding Specificity Principle; (P3) 
The Discrimination-Principle; (P4) The Variable Cognitive Processor Rate Principle; (PS) 
Fitts's Law; (P6) The Power Law of Practice; (P7) The Psychological Uncertainty Prinicple; 
(P8) The Rationality Principle; and (P9) The Problem Space Principle. Reprinted from Card, 
Moran, & Newe/I (1983, Fig. 2. 1.) wit,h the permission of Lawrence Er/baum Associates, Inc. 
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same goals in mind, we presented them with a fairly explicit 
task--the "manuscript editing task"--which required them 
to work fiom a marked-up manuscript, making the changes 
explicitly indicated. 

When we analyzed videotaped protocols of  our 
subjects doing this task, we were surprised to find little of  
the search behavior of  problem solving that we had 
expected. Subjects simply looked at the tasks and did them. 
The tasks were not problematic. The subjects had done 
similar tasks many times before, and had built up a large 
repertoire of methods that could be applied to the tasks. 
This wasn't problem solving; we came to call it cognitive 
skill and set out to build models to characterize and predict 
this mode of behavior. 

We applied our theories of  human information 
processing to the kind of  specific skills necessary for the 
text-editing task. The result was a class of  models in which 
the user's cognitive structure consists of four components: 
(1) a set of  familiar Goals that the user would recognize 
when faced with a specific task; (2) a set of  primitive 
Operators (actions) that the user was skilled at performing 
and could deploy whenever necessary; (3) a set of  Methods, 
consisting of "compiled" sequences of  subgoals and 
operators, that the user could use to attain his goals; and (4) 
a set of Selection rules that enable the user to choose among 
competing methods for goals. We call a model specified by 
these components a GOMS model (Figure 4 shows an 
example of  one). Together, these components constitute 
the user's cognitive skills for performing tasks. If  a user has 
enough knowledge of  this kind, it isn't necessary to use 
problem-solving strategies. All that is needed is to examine 
the task, characterize it in terms of a specific goal, select the 
appropriate method, and then execute it. 

In order to test our GOMS models, we ran a set of  
experiments to determine whether we could explicitly 
specify this kind of  GOMS knowledge and thus predict 
what users would actually do. We also wanted to learn how 
the degree of resolution--the grain of specified detail of  
such a model--affects the degree of  accuracy of  predictions 
based on the model. We expected fine-grained models to 
yield increased accuracy. Knowing that it takes a lot more 
work to develop a fine-grained model, a practical question 
related to the applicability of  our models was whether the 
additional work of  constructing a fine-grained model was 
worth the effort. 

To  find out, we built a family of  models in the GOMS 
framework that characterized the behavior o f  users of a 
specific computer text-editing system and ran experiments 
to test our predictions fiom these models. We were 
surprised to discover that fine-grained modcls did not yield 
a wordlwhile or even a significant increase in prediction 
accuracy (Card, Moran, & Newell, 1976, 1980a). More 
felicitous, practically speaking, was our discovery that even 
the crude models seemed to capture and predict behavior 
fairly well. These properties suggested that the GOMS 
model could be turned into the kind of  engineering tool 
that a designer could use to model and predict skilled user 
behavior in computer-mediated tasks. That was what we 
proceeded to try next. 

KEYSTROKE LEVEL 
M o d e l  K2: 

GOAL: EDIT-MANUSCRIPT 

GOAL: EDIT-UNIT-TASK 

. GOAL: ACQUIRE.UNIT-TASK 

• GOAL: TURN.PAGE" [slle betow) 

GOAL: GET-FROM-MANUSCRIPT* 

GOAL: EXECUTE-UNIT.TASK 

• GOAL: LOCATE,LINE 

CHOOSE-COMMAND 
. . . .  [ se lec t  GOAL USE-QS-ME'i~HOD 
. . . .  GOAL: SPECIFY.COMMAND" 

GOAL: SPECIFY,ARC" 

. . . .  GOAL: USE-LF.METHO0 

GOAL: SPECIFY-COMMAND' ]  

. . . .  GOAL: VERIFY,LOG" 
GOAL: MODIFY ,TEST 

. . . .  CHOOSS,COMMAND 

. . . .  [ se lec t  GOAL: USE-S,COMMAND 

. . . .  GOAL: SPECIFY.COMMANO" 

. . . .  GOAL: SFECIFY.ARG ° 

GOAL: SPECIFY-ARC" 
. . . .  GOAL: USE-M.COMMANO 
. . . .  GOAL: SPECIFY.COMMAND" 

. . . .  GOAL: SPECIFY-COMMAND" 

. . . .  GOAL: SPECIFY-ARC" 
GOAL: SPECIFY-COMMAND ° ] 

. . . .  GOAL: VERIFY-EDIT" 

. r e p e a t  u n t i l  n o  m o r e  u n i t  tasks 

. . i t  task not remembered 
, . .  I t  at end o f  m a n u s c r i p t  Page 

. . f f  a n  edit task was l o u n d  

. . .  i t  task not on current f i n e  

. . . . .  r e p e a t  u n t i l  a t  l i n e  

. . . . .  repeat until at text 

• E x o a n s i o n  of goals aoPearing several t ime~ :  

GOAL: TURN.PAGE 
• LOOK-AT-MANUSCRIPT . reoeat twice 
. ACTION 
. MOVE-HAND , r e p e a t  tWiGS 

, TURN-PAGE 
GOAL: GET-FROM-MANUSCRIPT 
, LOOK-AT-MANUSCRIPT 

• SEARCH,FOR 

. LOOK-AT.DISPLAY . optional 
GOAL: SPECIFY ,COMMAND 

. GOAL: GET-FROM,MANUSCRIPT" , i t  not e/ready selected 

. CHOOSE.COMMAND , i l  not already selected 

. GOAL: TYPE-STRING" 

GOAL: SPECIFY-ARC 
• GOAL: GET-FROM.MANUSCRtPT* . o p t t o n a l  

• CHOOSE.ARC 
• GOAL: TYPE-STRING'  

GOAL: VERIFY 
• LOOK-AT-DISPLAY 

• GOAL: GET.FROM-MANUSCRIPT" . O p l i o n s l  

• COMPARE 
GOAL: TYPE,STRING 
. HOME . optional 
. LOOK.AT.KEYeOARD . o p t i o n a l  

• LOOK-AT-DISPLAY . optional 
. TYPE.STRING 

Figure 4. GOMS Model  K2 fo r  the text editor POET. This 
model has a grain of about 0.5 see/operator.  The user is using a 
line-oriented editor to make changes to a computer file previously 
marked on a paper manuscript. Reprinted from Card, Moran, & 
Newell (1983, Fig. 5.12) with the permission of Lawrence Erlbaum 

Associates, publ ishers. 

The Keystroke-Level Model 

In simplifying the GOMS models into an engineering 
model that we could hand to a designer, we constructed an 
idealized prediction problem: 

Given a task (possibly involving several 
subtasks), lhe command language of a system, 
the motor skill parameters of the user, the 
response time parameters of the system, and 
the method used for the task, predict how long 
an ~xpert user will take to execute the task 
using the system, providing he uses the method 
without error. (Card, Moran, & Newell, 
1980b) 
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The Keystroke-Level Model enables a system designer to 
make such predictions with a "back-of-the-envelope" style 
of calculation. 

To do the calculation, the designer codes the method a 
user employs to do a task in terms of a set of operations 
derived from one of the fine grain GOMS models (Figure 
5). In this simplified model, all keystrokes are assumed to 
take a constant amount of time; and pointing with the 
mouse is also assumed to take a constant amount of time. 
Mental activity by the user is reduced to a single generic 
mental preparation operation, and rules governing when it 
will occur are provided. 

A typical use of the model to analyze a method is given 
in Figure 6. This method is one way in which a 
hypothetical text-editor could be used to replace a word 
recently typed by the user. Each action of the method is 
described in terms of the operators of the model, then a 
time for the method is computed. In this case, the method 
is expected to take the same amount of time regardless of 
how many words back the word to be replaced is located. 
Figure 7 shows the expected time for performing this 
methods and two other methods available in the editor as a 
function of the number of words back the to-be-changed 
word is located. It can be seen that the time profdes of the 
three methods are quite different and that each is fastest at 
different times. 

Operator Description and Remarks Time (Nc) 

P 

H 

D ( J D , I  o)  

M 

R(t) 

PRESS KEY OR BUl-rON. 
Prouing the ~HIFT or CONTROl. k, By coun~ ~ a 
mparato K o~ation. Time wu'f~ wil~ the tyl~ing skin of 
the tmr; the following shows the range of tyll~Cal values: 

Best typist (135 wpm) .08 
Good typist (90 wpm) . t 2  
Average ~illed typist (55 Wlm'n) .20 
Average non-secretary typist (40 wprn) .28 
Typing random letters .50 
Typing complex codes .75 
Worst typist (unfamiliar with keyboard) 1.20 

POINT WITH MOUSE TO TARGET ON A DISPLAY. 1.10 
The Ume to point v'~les ~ di~anoe and l~rget ~dze accorcling 
tO FlttS'S Law, ranging from .8 to 1.5 mc, WilD11.1 bo(nO an dwo~aOe, 
This operator does not inc~de me (.2 eoc) button prm that often 
fo~lows. Mouse pointing time is else a good eMimate for o4her efficlec~t 
analogue po~nt~ng devCes, auch m joysUaks (me Chapter 7). 

HOME HAND(S) ON KEYBOARD OR OTHER DEVICE. .40 

DRAW a O STRAIGHT-LINE SEGMENTS OF TOTAL 
LENGTH I O CId. .9m 0 +. 1610 
Tffis m a ~ ' y  ms~r'~tod o~ 'a tor ;  i / a ~ n ~  ~ a t  drawin~ is 
done with the mourn on s syslm Ihat con~'ains all line to 
fall on a Iqt~'e .58 cm ghd U~m vary in their drawing ~JII; 
II~,e time gwen is an ~tdKle vllue, 

MENTALLY PREPARE. 1.35 

RESPONSE BY SYSTEM. t 
Different CO~SnCM requimdiffecmlt re~0onae fillies, The reeponse 
time m counted only if it cauus the umr to wait. 

F i gu re  5. The  o p e r a t o r s  of  the  K e y s t r o k e - L e v e l  Mode l .  The 
f igure lists the operators needed to analyze user interface methods 
and to make calculat ions of user performance with these methods. 
Reprinted from Card, Moran, & Newell (1983, Fig. 8.1)with the 
permission of Lawrence Erlbaum Associates, Inc. 

Even though our GOMS study suggested that simple 
models could be effective, and even though the 
Keystroke-Level Model was a careful simplification of one 
of the GOMS models, we felt that it was necessary to 
rigorously text the explicit performance assumptions of the 
model. To validate the Keystroke-Level Model, we ran a 
large set of experiments in which people performed tasks 
with text editors, graphics editors, and executive 

M e t h o d  R (Replace) :  
Terminate type-in mode 
Point to target word and select it 

Call Replace command 

Type new word 
Terminate Replace command 

Point to last input word and select it 

Re-enter type-in mode 

T,x,oae = 4t M + 10.5t~ + 4t H + 2tp 

= 12.1 sec. 

MK[ESC] 
H[mouse] P[won:l] K[YELLOW] 

H[keyboard] MK[R] 

4.SK[word] 
MK[ESC] 
H[mouse] P[word] K[YELLOW] 

H[keytx~rd] MK0] 

F igure  6. Encod ing  o f  M e t h o d  R. Use of the Keystroke-Level 

Model to describe one possible method in a mouse-based display 
editor for replacing a word previously mistyped. It is assumed the 
word is still visible on the screen. Reprinted from Card, Moran, & 
Newel/ (1983, p. 289) with the permission of Lawrence Erlbaum 
Associates, Inc. 

14 

i i  S S S S S ~  

0 
0 5 10 15 

n (words) 

F igure  7. E x e c u t i o n  t ime  of  t h r e e  m e t h o d s  for  the  
m i s s p e l l e d - w o r d  t a s k  as a f u n c t i o n  o f  n. This f igure shows the 

use of the Keystroke-Level Model for the parametric comparison of 
three dif ferent methods for accomplishing the same goal. In this 
case each method appears to be super ior in a certain range of n. 
Reprinted from Card, Moran, & Newell (1983, Fig. 8. 12a) with the 
permission of Lawrence Erlbaum Associates, Inc. 
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subsystems. The results (Figure 8) showed a good fit 
between predictions derived from the model and observed 
times required for the tasks. Therefore, our simple 
approximative model would be of  some use in making 
practical time estimates. 

The Keystroke-Level Model has actually proved useful 
in real system design. One application was the 
determination of  the number of  buttons on the mouse for 
the Xerox Star product. Several schemes for selecting text 
in the Star text editor were proposed. These schemes 
required different numbers of  buttons. The goal was to 
make a mouse with the smallest number of  buttons 
possible, so that it was easy to learn to operate. 
Experiments to test the schemes were reasonably easy to 
run with novice subjects. Everyone is a novice subject on a 
new system, and being a novice doesn't require training. 
But understanding how well the schemes would work for 
expert users (which most users would be for most of  their 
time on the system) was expensive, because a long time 
would have to be spent training the users. The solution was 
to run experiments for novices and to use the 
Keystroke-Level Model for predicting expert performance. 

The Keystroke-Level Model allowed us to carry 
through, at least in regard to a very specific kind of  
behavior, part of  our original vision of  packaging 
psychological knowledge into a model that designers can 
use to calculate user performance with a variety of  
interactive computer systems. 
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F i g u r e  8 .  P r e d i c t e d  v s .  o b s e r v e d  e x e c u t i o n  t i m e s  in  t e s t s  

o f  t h e  K e y s t r o k e - L e v e l  M o d e l .  P r e d i c t e d  e x e c u t i o n  t i m e s  w e r e  

c a l c u l a t e d  f r o m  t h e  K e y s t r o k e - L e v e l  M o d e l .  O b s e r v e d  e x e c u t i o n  

t i m e s  c o m e  f r o m  e m p i r i c a l  o b s e r v a t i o n .  Reprinted from Card, 
Moran, & Newe// (1983, Fig. 8.6) with the permission of Lawrence 
Erlbaum Associates, Inc. 

The Unit Task 

Not all skill characteristics can be reduced to simple 
counting, however. In studying text editing, we observed a 
characteristic of  cognitive skill that is fundamentally 
cognitive, namely the organization of  user behavior into 
short, quasi-independent tasks, which we call unit-tasks. 
Figure 9 shows a typical timeline of  user behavior, in this 
case from a protocol of  an electrical engineer using a 
graphic CAD system to design a VLSI circuit. The figure 
shows that the behavior is divided into chunks, each 
consisting of  a a few seconds of  pause (to formulate a task to 
do) followed by a few seconds of  activity (to execute the 
task). Each think-execute chunk of  behavior is a unit task. 

The unit task structure of  cognitive skill is interesting 
because the performance limitations of  the user show 
through the purely rational organization of  his behavior. 
The most significant reason why the unit task breakdown of  
behavior arises is because of  limitations in the user's 
working memory. If the user can manage input and output 
streams in his working memory, then the user's behavior 
will have a continuous structure, as in touch typing from a 
manuscript But, when conditions on the inputs and 
outputs do not allow this, then behavior must be structured 
into a series of unit tasks. 
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F i g u r e  9 .  T i m e  l i n e  r e p r e s e n t i n g  t h e  u s e r ' s  b e h a v i o r  
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b e g i n s  o n  a n e w  l i n e  a t  t h e  b e g i n n i n g  o f  e a c h  u n i t  t a s k ,  a n d  t h e  

c l o c k  t i m e  i s  t h e  t i m e  a t  t h e  b e g i n n i n g  o f  t h e  u n i t  t a s k .  Reprinted 
from Card, Moran, & Newe// (1983, Fig. 10. 7) with the permission of 
Lawrence Erlbaum Associates, Inc. 
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Figure lO portrays a trace of  the working memory load 
of  the user, based on logical considerations of  when 
information must be available in memory in order to do a 
task. As we can see, memory requirements build from a 
low point at the start of a unit task to a high within the trait 
task, where information for the task has been assembled, 
and back to a low point at tile end of  the unit task, where 
the information is no longer needed. If the information in 
working memory should reach a level higher than the 
working memory capacity, then user performance will 
stiffer, usually manifested by the user committing errors. 
To avoid these errors, the user must break down the overall 
task into smaller (unit) units, each of  which can be managed 
in the available working memory. 
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Figure 10. Data in Working Memory during a unit task. This 
figure is an hypothetical trace of the performance of one unit task. 
Time runs to the right on the horizontal axis. The bars indicate the 
time during which each piece of information about the task is 
needed. The arrows indicate the initial time data is available and 
the subsequent times it is needed. The histogram on the top plots 
the total Working Memory load over time, showing how the load 
peaks within a unit task and dips between unit tasks. Reprinted 
from Card, Moran, & Newel/(1983, Fig. 11.12) with the permission 
of Lawrence Erlbaum Associates, Inc. 

Unit-task behavior is at present a theoretical notion 
based on empirical observation (see Card, Moran, Newell, 
1983, for further discussion). But it represents an important 
feature of  user behavior--a sort of  "cognitive 
rhythm"--that  should be taken into account in designing 
user-computer interfaces that are sensitively tuned to the 
user's capabilities. 

The Psychology of Human-Computer Interaction 

In 1978, one of  us had completed a doctoral thesis 
(Card, 1978) that consolidated much of  the work we had 
been doing. The thesis helped convince us that the time 
was appropriate for writing a book presenting our vision of  
an applied science of  the user. Work on the book gave us 
the opportunity to focus on the larger vision instead of  just 
the pieces, and we became aware of  some missing unifying 
theoretical work that we felt we had to do. 

Although we had several calculational models (Fitts's 
law for the mouse, GOMS models, the Keystroke-Level 
Model, plus other minor models), there were questions of  
relating these to the classical literature in cognitive 
psychology and human factors. We had long sought a 
unifying framework for tying together the relevant 
psychological knowledge about users (one of  our 1974 
working papers called this conception the "Handbock of  
Cognitive Man"), but had made little progress. In 
preparing the book we revived this goal and came to a 
much more satisfying conception, the Model Human 
Processor, wMch captured the relevant psychological 
literature in the terms of  a unified, approximative model. 
This model also provided a foundation for our o t h e r  
models. 

The other big missing piece for us was to understand 
the relationship between the cognitive skill we had 
discovered and the classical notion of  problem solving in 
cognitive psychology. Here we built a theory of  the 
behavioral continuum between problem solving and 
cognitive skill and showed how practice on a task would 
gradually chan~ge problem solving behavior into skilled 
behavior. This is all active area of  research in cognitive 
psychology today (e.g., Anderson, 1981). 

The result of  these efforts was the book, The 
Psychology of lIuman Computer Interaction (Card, Moran, 
& Newell, 1983). However, the book represented only the 
main line of our research efforts that fit together into a 
tightly knit view. There were many other areas of  our work 
that we decided not to put into tile book, such as the issues 
of learning and of users' mental models. 

4. The Conceptual Interface: Mental Models 

The early effort of  the AlP Project was focused on 
understanding expert user performance. As we explained 
in the previous section, skilled performance is characterized 
by methods that users know and quickly execute to 
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accomplish tasks. That is, we were focused on what is 
typically called procedural knowledge ("how-to-do-it" 
knowledge). However, from the beginning, we were aware 
that methods are not sequences of  meaningless actions, but 
that expert users also have an understanding of  what the 
procedures cause the machine to do. That is, the expert 
users have some sort of  mental model of what is happening 
inside the computer Chow-it-works" knowledge). 

The first AIP memo in 1974 proposed the notion of  the 
"user's model," which refers to the conceptual model that 
the user can have of  the system. A user's conceptual model 
is distinct from (but related to) the designer's 
implementation model. It is an abstraction of  the system's 
architecture and software structures--the conceptual 
entities that the architecture and software implements--that 
is simple enough for non-technical users to grasp. (For 
example, a user might not know how the mechanism of the 
delete buffer of  a text-editor works, but would simply know 
that the deleted text goes into a "clipboard.") A user's 
model would typically include knowledge of  where 
information is stored (core memory, local disk files, remote 
file servers). It is important for the user to have an 
understanding of these kinds of features, for they are often 
not visible to the user. 

The user's model provides an integrated package of  
knowledge that allows the user to predict what the system 
will do if certain commands are executed, to predict the 
state of  the system after the commands have been executed, 
to plan methods for novel tasks, and to deal with odd error 
situations (by characterizing the system's state according to 
the model, then choosing operations necessary to leave that 
state). 

Early Encounters with Conceptual Models 

Early in our research we tried to write down 
rudimentary descriptions of  the elements of  conceptual 
models, which included the conceptual objects, their 
properties, how they related to each other (the characters in 
a text editor, for example, including the notion of  a blank 
space as a character), and the conceptual operations that 
could be performed on those objects (inserting, moving, or 
deleting characters, including blank spaces). 

Given the obvious importance o f  this kind of  
knowledge for the user, we were surprised to find that 
almost no system documentation ever clearly laid out a 
conceptual model of  the system for the user. We were also 
surprised to discover what a difficult inductive task it is to 
specify such a model, even for a seemingly simple text 
editor. It was a detective game in which we were forced to 
hypothesize and test elements of  possible models in order to 
find a succinct conceptual characterization of  how the 
system worked. It was a game that took us days (not 
minutes) to do, hence not a game in which busy users were 
likely to engage. 

It is clear that users attempt to make sense--by 
building mental models--of the behavior of  a system as 

they use it. If  a simple model is not explicitly or implicitly 
provided, users formulate their own myths about how the 
system works. These user-invented models may be 
inaccurate or misleading outside the very limited situation 
from which they emerged. Therefore, we believed that if 
the user is to understand the system, the system has to be 
designed with an explicit conceptual model that is easy 
enough for the user to learn. We call this the intended user's 
model, because it is the model the designer intends the user 
to learn. Just what mental model the user actually forms is 
another issue, which depends on how clearly the intended 
user's model is designed, how well it is implemented, and 
how well it is documented. 

Although we were very concerned about the mental 
model issue, we didn't pursue explicit studies for several 
reasons: we didn't have a satisfactory methodology for 
studying it, we didn't have satisfactory representations of  it, 
and we were busy pursuing the performance issues we have 
discussed. Still, we felt that the intended user's model was 
an important consideration in the user-interface design 
process. 

User Interface Design Methodology 

The practical application of  our concerns came when 
Xerox began arranging the technology transfer between 
PARC ,and the Systems Development Division (SDD), 
which was created to develop office system products based 
on the research at PARC. In the Spring of  1976, a joint 
PARC/SDD committee (which included one of  us) was 
formed to advise SDD on the design of  the user interface of  
the office systems. 

The committee decided not to try to design an actual 
interface, but to propose a methodology for SDD designers 
to follow in designing their interfaces. The methodology 
(Irby et al., 1977) included four parts: (1) analyze what tasks 
the user will want to do and the steps they go through to 
accomplish the tasks; (2) design an intended user's model in 
terms of  which the tasks may be cast; (3) design a command 
language to make that model work; and (4) design an 
information display to reflect the operations of  the system 
in terms of  the conceptual model. 

Thus, we recommended that the designer should lay 
out an intended user's model before designing the 
command language and the information display. The 
whole design effort should be oriented toward keeping this 
model "under control," i.e., keeping it simple, consistent, 
and clear enough for users to grasp. 

The original designers of  the Xerox Star interface, the 
workstation product SDD built, used this methodology. 
The conceptual model was clearly laid out in the system's 
functional specifications, and the designers worked hard to 
keep the model consistent. Although this model was 
represented informally, the fact that the designers focused 
on it contributed heavily to the widely recognized success of  
Star's user interface. The conceptual model is an 
under-appreciated aspect of  Star's interface, but Star's more 
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widely-touted icons and desktop metaphor only make sense 
with respect to its underlying conceptual model. 

William Newman, another member of  the committee, 
presented this methodology in the second edition of  his 
book with Bob Sproull (Newman & Sproull, 1979). 

Empirical Studies 

By 1979, we were ready to tackle some empirical 
studies in order to understand the role of  the user's model. 
The first study was an attempt to elicit the knowledge that 
real users of  real systems have about the systems they use 
every day. The system we chose to study was the Alto 
Executive, a system which was in wide use at PARC for 
several years by nontechnical support people as well as 
programmer5. 

We wanted to find out what Alto users knew about the 
Executive. The goal was to see whether we could find some 
kind of  mental models buried in the user's knowledge. The 

Problem No-Model  Model 
Type Use rs Use rs 

Routine 98 9,5 

Complex 87 88 

Invention 25 67 

Figure 11. Percentage of problems correctly done in the 
calculator experiments. There were two groups of users; one 
was taught an explicit conceptual model of the calculator's stack 
and the other group was prevented from having such a model. 
There were three types of problems, each of a different difficulty 
relative to what the users were taught. 

methodology we used was to transcribe interviews with 
several users into logical propositions and then classify 
them into categories. 

The surprising result was that many nontechnical 
expert users (e.g., secretaries who used the system 
effectively every day) gave no evidence of  having anything 
but very shallow models of  how the system worked. 
(Perhaps we shouldn' t  have been surprised, because no 
conceptual model was documented and training was 
informal.) This led us to consider more carefully the role of  
the user's model. 

In order to characterize the role a user's mental model 
would play in the use of  a system, we performed 
experiments with the simplest kind of  system we could 

devise, a simple stack-based calculator (Halasz & Moran, 
1983; Halasz, 1984). We thought that a model of  a stack 
might well be useful to help rationalize what for many users 
is a nonintuitive postfix command language. The formal 
experiment compared one group of  users who were taught 
an explicit conceptual model of  the stack, and a group o f  
users who were carefully shielded from the stack model. 
The model group was trained in relation to a specific model 
and were told how that model related to the methods for 
solving arithmetic problems. The no-model group was only 
taught specific methods for performing the same tasks. 
Then we gave the two groups sets of  problems that were 
categorized as simple routine tasks, slightly more complex 
tasks, and very difficult "invention tasks" (which required 
the user to invent new methods to solve). 

The results (see Figure 11) revealed no difference 
between the two groups in both the routine and complex 
problems, but  the model group performed much better on 
the invention tasks. The most surprising result was that 
even some of  the no-model group were able to perform 
some of  the invention tasks. We wanted to account for 
these results according to the cognitive theories we 
understood, so we analyzed the protocols gathered from the 
use,'s as they performed the tasks. 

No-Model Users Model Users 

Problem Solving Problem Solving 
Problem Skilled Skilled 
Type  Method Model Methods Task Method Model Methods Task 

Execution Space Space Space Execution Space Space Space 

Routine 90 0 8 2 89 11 0 0 

Complex 94 0 6 0 91 7 0 2 

Invention 2 0 84 14 7 71 19 3 

Figure 12. Partitioning of the users' behavior in the calculator experiments. The 
users' behavior was devided into four behavioral modes: skilled method execution plus three 
problem solving modes, which are distinguished according to which problem space they were 
working in. The partitioning is based on an analysis of verbal protocol records; each line of 
protocol was categorized into the mode it manifested. The numbers in the table are the 
percentages of lines of protocol in each behavior mode. We believe that this measure 
underestimates the amount of work in the task space. 
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We divided the users' behavior into skilled method 
execution, as we had modeled in our earlier studies, and 
problem-solving. We found (see Figure 12) that in the 
routine and complex problems, the behavior was almost all 
skilled method execution: the subjects had been taught 
what to do, and they did it; even for the complex problems 
it wasn't difficult to knit together the methods they had 
learned for solving the problems. 

Our hypothesis going into the study was that the 
conceptual model we taught the model group of users 
would provide them with a problem space through which 
they could search in order to find solutions. According to 
this theory, the user would characterize a difficult 
"invention" task in terms of this problem space: the state of 
the system when they started, the state of the system they 
would like to achieve, and a set of operations to move them 
through that space; they would solve the problem using 
generic problem-solving strategies. 

However, when we analyzed the users protocols, we 
found two other kinds of problem spaces in which the users 
worked when they were problem solving. One was a task 
space within which they manipulated the given arithmetic 
task in various ways, such as dividing it into subtasks that 
could be solved by known methods. Another space in 
which they worked was a methods space, where they took 
known solution methods as strings of steps, manipulated 
those steps in various ways to produce new methods, and 
tried them to see how they worked. 

We found that the most critical (although not very time 
consuming) problem solving was in the task space, where 
the user analyzed the given task into subtasks and delegated 
them to the model space or the methods space. The main 
difference between the users who had a model and those 
who didn't was that they had different problem spaces in 
which to work (see Figure 12). The model space was an 
effective problem space, within which the solution to the 
invention problems could be found; the method space was 
not particularly effective, but it was sufficient to allow some 
non-model users to stumble onto solutions to some of the 
invention problems (often, much to their surprise). 

We concluded that mental models can be useful for 
novel task situations, but we found that users only use their 
models in specific subtasks; there was a lot of switching 
between the task space and other problem spaces. Users 
were cautious about going into a mode of behavior that 
involved thinking through a mental model. Model-based 
problem solving appears to be very mentally intensive, so 
users avoid it if they can apply cognitive skills. But, if users 
don't have appropriate methods available, they will retreat 
to some kind of problem solving. In these cases, a good 
conceptual model provides an effective problem space in 
which to work. 

Thus, system designers should think of a conceptual 
model of a system as not just a simple view of a complex 
system, but as a problem space through which users can 
search for solutions to a variety of novel problems. The 
conceptual entities and operators in the intended user's 

model should be closely related to the kinds of tasks the 
users arc likely to do, and the users should be provided with 
heuristics for moving through the model space. 

Theoretical Studies: Task Mapping 

We also worked on a theoretical analysis of conceptual 
models to show where they fit into the overall structure of 
the user interface. The Command Language Grammar 
formalism (Moran, 1978, 1981) shows how models relate to 
the task domain, the command language, and the detailed 
user-computer interactions. According to this theory, the 
conceptual model provides the user with a link between his 
task domain and the syntax of the interactive dialogue. 
That is, on the one hand the conceptual model serves as the 
semantics of the dialogue actions, while on the other hand it 
serves as a base into which the task can be mapped into the 
system. 

Richard Young called this kind of mechanistic 
conceptual model a surrogate model (Young, 1983). 
Interactions on these issues with Young, who was exploring 
the domain of simple calculators, led to the discovery of a 
new kind of mental model--task-action mappings (Young, 
1981). The properties of radically different calculator 
designs, such as algebraic versus stack calculators, could be 
best understood by an analysis of how well calculation tasks 
could be directly mapped into the actions available on the 
calculators. Surrogate models were completely bypassed in 
this analysis, which helps explain why people sometimes 
seem to get along with systems without having surrogate 
models of them. 

In further work along this line, we have proposed a 
calculus, called ETIT analysis, for task mapping (Moran, 
1983). The "fit" of a system to a task domain can be 
assessed by enumerating rules for reformulating 
system-independent task descriptions ("external tasks") into 
system-specific task descriptions C'internal tasks"). 
Rule-based system description techniques, such as this or 
Payne's (1984) task-action grammar, are beginning to 
provide a way to help us formalize the fuzzy notion of the 
consistency of a system (both internal consistency and 
consistency with respect to a task domain). Such techniques 
look promising as a way provide system designers with 
calculational techniques for predicting the learnability and 
"guessability" of systems. 

5. The Task Interface:  Pondering Ideas 

Let us now turn to the role of a science of the user in 
the future development of the personal workstation. For 
us, the real challenges for user technology are now at the 
larger task level in which users are grappling with complex 
intellectual tasks. This is, of course, a return to working 
directly on a modern version of the original vision of 
augmentation workstations. 
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We now have workstations powerful enough to give 
each user a personal system equivalent to one that only a 
decade ago would have been shared with a hundred other 
users, and we are on the verge of  major upgrades to even 
greater computing and communication power. We now 
have a much more developed base for user technology--not 
only techniques for designing user interfaces, but also 
models for tmderstanding users. Thus, we are now in a 
better position than ever before to explore systems that can 
really augment human intellectual endeavors. 

The challenge is to create systems that, through 
intimate cognitive interaction with users, aid them in 
structuring and manipulating their ideas. With such 
systems to help them, people will then be able to cope with 
more and more complex intellectual tasks of  all 
sorts--authoring books and multi-media presentations, 
designing products and programs, composing music, 
analyzing experiments, the arguing points of  law and policy, 
reasoning about scientific and social issues, and on and on. 

The key to building such systems is to find ways by 
which a user can act on his ideas as objects, just as current 
text editors allow him to act on words as objects. This is 
difficult, since ideas are often tacit and ill-formed. A means 
is needed to externalize the ideas, to get them out of  the 
user's head and into a form that can be organized and 
shaped. Two problems require solution: 

(I) 

(2) 

The user needs new ways to represent his 
ideas--to get the user's mind around the ideas, 
as it were. For this we can exploit advances in 
artificial intelligence and cognitive science. 

The user needs new ways to manipulate his 
ideas--to get the user's hands on the ideas. For 
this we can exploit advances in interactive 
computer graphics. 

These problems are part of  our current research 
agenda. In this endeavor we must not only build on our 
current base of  understanding of  the user, but also advance 
that understanding. For one thing, we ha~,e to launch 
studies into the nature of  the complex intellectual tasks we 
wish to augment. This calls for a shift in our research 
strategy from studying users of  existing systems to studying 
users of  new systems that we ourselves build, which enables 
us to understand the nature of  the tasks and the limits o f  
users and systems for dealing with them. We give 
illustrations of  this strategy from some of  our own current 
projects. 

Representa~on: Idea Structuring 

Word processors and text editors, even powerful ones, 
are tailored for the final stages of  writing a paper--crafting 
the text and graphics of  the final product. Outline 
processors help with the previous stage of  outlining. 
Although the latter are sometimes called "idea processors," 
it is clear that idea processing begins well before the stage of  

outlining. A genuine idea processor should allow the user 
to deal with ideas that are vague and ill-structured and help 
him gradually add structure as it is discovered. 

We use the term authoring to refer to the larger 
intellectual task of  gathering information, extracting and 
discovering ideas, structuring them, and finally composing 
them into a readable product. Authoring in this sense is a 
highly general task composed of  generic subtasks, as 
illustrated in Figure 13. One begins by collecting sources of  
information; from these a set of  notes (idea-sized units) are 
created to represent potentially relevant facts and ideas. As 
notes accumulate, they need to be filed in a structure 
suitable for retrieval, such as a topic hierarchy. But these 
notes also need structures that organize the ideas into 
meaningful, coherent themes. Such structures must be 
discovered, elaborated, supported by evidence in the notes 
and other sources. One then communicates these ideas by 
composing them into an interpretable product- -a  
document, a slide presentation, or a browsable network of  
ideas. 

The key research issue here is to help the users develop 
explicit mental models of  idea structures, so they can see 
them, play with them, and evaluate them. This requires the 
invention of  representations for externalizing ideas and idea 
structures. Cognitively, these representations serve the 

co __ 
s e l ~ d a t e  

discov 

IDEA I 
STRUCTURES ] 

c o m p ~ e r p r e t  

Figure 13. Schematic diagram of the generic authoring 
task. The boxes are the types of information to be managed in the 
authoring process, and the arrows are some of the processes for 
generating and transforming the information. 

194 



users as problem spaces; and new representations can 
fimdamentally alter the way they are able to deal with ideas. 
Some representations should be "weak" in the sense that 
they can easily capture a large variety of  even vague ideas; 
other representations should be "strong" in the sense that 
they can precisely capture and process particular classes of  
idea structures; and facilities must be provided to help users 
transform weak representations into strong ones. 

We are developing a system, called NoteCards, to 
explore the broad nature or the authoring task. NoteCards 
supports the orienting metaphor of  the notecard as a 
medium for capturing an idea. Notecards can be stored in 
fileboxes and linked into complex sU'uctures, which can 
then be viewed in graphic representations (such as the one 
shown in Figure 14). NoteCards is designed to be an open, 
flexible environment, so that we can use it as a "laboratory" 
to explore new representations and tools to support 
authoring tasks. Because it is an open system, NoteCards 
users are faced with the problem of devising appropriate 
ways to use the system, that is, mapping their particular 

tasks onto the basic elements of  the system, This leads to a 
further interface issue of  making the environment tailorable 
by users themselves to the wide variety of  situations that we 
encourage them to bring to NoteCards (paper and 
documentation writing, scientific and legal argumentation, 
instruction authoring, design analysis). Thus, in contrast to 
our earlier methodology of  observing a controlled, skilled 
user population, we are now observing a population of  
idiosyncratic, exploratory users. 

Manipulation: Idea Browsing 

The representations in an idea-structuring environment 
must be assimilated and manipulated with facility and 
speed. Idea-processing tasks are difficult for users, because 
they involve the retrieval, tracking, and manipulation of  a 
large number of  ideas (as is being attempted in Figure 14). 
Authoring a paper, for example, may require hundreds Of 
notes and scores of  references; programming may require 
hundreds of  routines. But, as the Model Human Processor 
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shows, only limited amotmts of  information can be handled 
in the user's working memory. These limitations lead the 
user to structure his behavior into unit-task bursts. 

These considerations lead us to ask how a computer 
system can compensate for human cognitive limitations. 
The display can be used as an external memory to augment 
the user's internal working memory. This partly explains 
what has made the "'desk-top" metaphor successful: users 
can use windows and icons to keep track of  more 
documents, notes, and messages from other users than with 
the previous style of  command language interfaces. By 
having these things visible as reminders, the user's effective 
working memory is increased, enabling him to do more 
complex tasks. 

But the problem is that these techniques, which work 
well with with a few dozen objects, do not scale well up to 
the several hundred or even thousands of  objects necessary 

for the idea-processing tasks we wish to do. Here, it helps 
to begin with a better understanding of  the nature of  the 
problem. Again, our method for gaining that 
understanding is through approximative models of  user 
behavior. In this case, we have sketched a model called the 
Window Working Set Model (Card, Pavel, & Farrell, 1984) 
that analyzes access to screen objects in a manner analogous 
to the analysis of  virtual memory operating systems. 
Informally, this model suggests that screen space itself is the 
key constraint and that at some point as the number of, say, 
overlapped windows required increases, user performance 
will decrease in a sudden and non-linear way, sending the 
user into the window version of  thrashing. 

Thus there are limitations on the uses of  current 
graphical interface techniques for browsing large sets of  
ideas. Advanced graphics systems, however, open up a new 
set of  possibilities. Figure 15 shows a fiagment of  an 

Figure 15. Exper imenta l  Dandel r is  browser  for organizat ion charts .  The photograph 
shows a view of a fragment of an organization chart as seen by a user flying around this chart. 
The chart is laid out on a simulated 2-dimensional whiteboard. The user can change his 
location in simulated 3-dimensional space, his direction of gaze, and by pointing with the 
mouse to indicate focus, the relative sizes of different organization chart boxes. (The 
experimental program was written by S. Card, A. Henderson, L. Lovstrand, and B. Verner.) 
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organization chart from an experimental browsing system 
we are implementing (the Dandelris, combining a Xerox 
DandeTiger Lisp nnachine and a Silicon Graphics Iris 
graphics processor). The node that is the user's focus is 
largest and is readable in the most detail. Nodes become 
smaller with distance from the focus. The user can fly 
around this chart to see it from different points of  view and 
change his direction of  gaze; if he points at a node, 
indicating a new focus of  attention, it grows larger. The 
transitions are all animated in real-time, color, 
three-dimensional representations to help the user keep 
track of  the transformed identities of  various objects. 

Such a display is designed to help the user navigate 
among a large number of  objects; only a few of  these 
objects would be visible in detail at any time, but many 
more would be visible as orienting cues and retrieval keys. 
The visual movement techniques is coupled with other 
retrieval techniques for allowing the user to focus on a 
limited number of  items at a time (as required by our 
understanding of  user's processing capacity) while retaining 
rapid access to a large number of items (as required by our 
understanding of  the requirements of  complex intellectual 
tasks). By coupling experimental programming with the 
analysis of  user behavior, we hope to find theory-based 
techniques to aid the user in keeping track of  and 
maintaining effective browsing and retrieval capability for 
large in formation structtlres. 

conceptual models provide the basis for users to acquire 
mental models, and thus are an important basis for system 
design. But mental models are cognitively intensive, and 
users will avoid them by attempting to map directly f rom 
their tasks to the actions required in a system. Theories o f  
task mapping are just beginning to emerge. 

At each of  the above levels, it has been possible to base 
an applied science on a theory of  the cognitive mechanisms 
tmderlying user behavior. Ateach level, the applied science 
was shown to be practical, in particular by being influential 
in the design of  the Xerox Star. 

The challenge for us today is to use our understanding 
of users to discover new ways to augment users in complex 
intellectual endeavors. Thus, we are concentrating our 
effol~s in those areas where users' cognitive limitations need 
to be overcome and where users' cognitive abilities can be 
aided with computer-based tools. We believe that the most 
interesting problems are at the task level: understanding the 
nature of  complex intellectual tasks and finding ways to 
build idea-structuring tools, both representation tools for 
structuring ideas and display tools for browsing ideas. 

Whereas we once studied users empirically using 
existing systems in order to understand the nature of  
human-computer interaction, we now use what we have 
learned about users to help drive the creation of  new 
experimental systems. 

6. Conc lu s ions  

What has been learned about users and bow does this 
relate to the original visions of  personal workstations? The 
short answer is that, unlike the early 1970's when little was 
known scientifically about computer users, we now have a 
vision of  the form of  an applied science of  the user and a 
few areas of  knowledge where that vision has been realized. 
In this paper we have narrated some of  our efforts at 
building this applied science: 

At the physical interface level, we have discovered that 
user performance with pointing devices is constrained by 
the information-processing capacity of the user. We have 
learned the quantitative law describing this constraint and 
have determined that certain devices, such as the mouse, are 
at the performance limits allowed by this law. 

At the cognitive level, we have learned that routine 
human-computer interaction, such as text-editing, does not 
involve problem solving, but rather cognitive skills based on 
the execution of  known methods. We can see the 
information-processing constraints of  the user show 
through this skilled performance in the unit task of  users. 
We have characterized cognitive skill to the extent of  
developing an engineering model for use by user-interface 
designers. 

At the conceptual level, we have learned that users 
often have mental models of  the systems they use, and that 
such models enable performance of  novel tasks. System 
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