
User Technology:
From Pointing to Pondering

Stuart K. Card and Thomas P. Moran
Xerox Palo Alto Research Center

From its beginning, the technology of personal
workstations has been driven by visions of a future in which
people would work in intimate partnership with computer
systems on significant intellectual tasks. These visions have
been expressed in various forms: Memex (Bush, 1945),
Man-Machine Symbiosis (Licklider, 1960), NLS (Engelbart,
1963), Dynabook (Kay, 1977), and others.

The tight coupling between human and computer
required by these visions necessitated advances in the ways
humans and computers interact. These advances have
slowly begun to accumulate into what might be called a user
technology. This user technology includes hardware and
software techniques for building effective user interfaces:
bitmapped displays, menus, pointing devices, "modeless"
command languages, animation, and interface metaphors.
But it must include a technical understanding of the user
himself and of the nature of human-computer interaction.
This latter part, the scientific base of user technology, is
necessary in order to understand why interaction techniques
are (or are not) successful, to help us invent new techniques,
and to pave the way for machines that aid humans in
performing significant intellectual tasks.

In this paper, we trace some of the history of our
understanding of users and their interaction with
workstations--the personal part of personal workstations.
In keeping with the spirit of other papers at this conference,
we have centered this review around our own experiences,
perspectives, and work and have not attempted a complete
history of the field. In concentrating on our own work, we
do not wish to mimimize the importance of others' work;
we simply want to tell our own story. Our focus is on what
we have learned about users in our years of studying them
and how we see our findings relating to the original visions
of the personal workstation.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1986 A C M - 0 - 8 9 7 9 1 - 176-8- 1 /86-0183 $ 0 0 . 7 5

1. The Vision of an Applied Use r Psychology

The opportunity to tackle a science of the user brought
us to PARC in 1974 (collaborating with Allen Newell, as
consultant). As other PARC researchers were beginning to
pursue the vision of highly graphic, interactive,
network-based personal workstations, we were following a
vision of our own. The idea was to draw concepts from
cognitive psychology and artificial intelligence to create an
applied cognitive science of the user. We called our project
the Applied hi formation-processing Psychology Project
(ALP). A]971 memo by Allen Ncwell proposing this
project to PARC stated the basic argument this way:

(I) There is emerging a psychology of cognitive
behavior that will permit calculation of behavior
in new situations and with new humans

(2) Several of the tasks that are central to the
activities of computing--programming,
debugging, etc.--are tasks that appear to be
within the early scope of this emerging theory.

(3) Computer science in general is extremely
one-sided (for understandable reasons) in the
treatment of its phenomena: almost no effort goes
into understanding the nature of the human user.

(4) There is a substantial payoff (in dollars) to be had
by really designing systems with detailed
understanding of the way the human must
process the information attendant thereto.

In 1974, we were in the position of having to create a
new field. Psychological theories and methodologies held
the promise of being able to represent and manage complex
cognitive tasks, but the only body of research pertaining to
human-computer interaction was in the field of human
factors, where studies were largely empirical and evaluative,
concentrating mostly on sensory-motor questions like the
best shape for a switch. Human-computer interaction,
involving two active agents each capable of initiating an
exchange of information, inherently involves human

183

cognitive processing. Our vision was to create a science of
the user rooted in cognitive theory. But we also wanted the
science to be practical, providing the system designer with
the conceptual tools to think about the key characteristics of
the user and the calculational tools to take account of the
user's behavior.

To simplify a rather complex history for the purposes
of this paper, we will narrate just a few strands of what
unfolded. Each strand is organized around a particular
aspect of the interface between the user, the system, and the
task. The strands are organized into a sequence of
ever-broader interfaces, from the physical interaction of the
user with devices and displays to the symbiotic interaction
of the user with the system while grappling with complex
intellectual tasks-- that is, from pointing to pondering:

The physical interface: The user interacts
with a system by means of physical input
devices, such as a keyboard and a mouse, and
output devices, such as a high-quality
graphical display.

The cognitive hzterface: The user has certain
characteristics as an information processor,
such as a limited working memory, that
together with the goals he is trying to achieve
determine his behavior.

The conceptual #lterface: The computer
system is also a complex information
processing mechanism, and the the user
needs to have some kind of mental model of
it in order to effectively interact with it.

The task interface." Systems are designed to
help their users do tasks, not only small,
routine tasks, but also larger, difficult
intellectual tasks that are the object of the
grand visions of personal workstations.

The story within each strand of our work is chronological;
but the first three strands, representing our previous work,
overlap in time. The last strand represents our current
work.

2. The Physical Interface: Pointing

Bill English, who had among other thing engineered
and built the mouse for Doug Engelbart (English,
Engelbart, and Berman, 1967), was one of the people who
migrated to PARC when it was founded. We worked for
English when we first came to PARC. Engelbart and
English had always considered the mouse to be an interim
device, and English wanted to see if it was possible to invent
other devices that would improve on its speed. In
particular, he was interested in whether one could put a key
on the keyboard that would sense force and direction
without requiring the user to remove his hands from the
keyboard. He had a number of devices built, and we
helped design an experiment to test them. The results
(Figure 1) showed that none of the devices tested improved
on the mouse either for speed or for error rate (Card,
English, & Burr, 1978).

This was a typical human factors experiment: we
compared a set of systems to determine which one
performed best. But this direct empirical comparison
bctween devices was just the sort of methodology of human
factors testing that we wanted to improve: we wanted to
understand the reasons why the results came out the way
they did. We therefore made mathematical models of each
device and tested them against the data until we found
models that fit. The model for the mouse was particularly
instructive. The mouse was best modeled by a version of
Fitts's Law:

Movement Time = Constant + .1 log2(D/S + .05) sec,

Device

Movement Time for Non-Error Trials Error Rate

Trials Homin 9 Time Positionin 9 Time Total Time
N M SD .~f SD J,f SD %f $1)

(see) (see) (see) (see) (see) (see)

Mouse 1973 .36 .13 1.29 .42 1.66 .48 5% 22%

Joystick 1869 .26 .11 1.57 .54 1.83 .57 11% 31%

Step Keys 1813 .21 .30 2.31 1.52 2.51 1.64 13% 33%

Text Keys 1877 ,32 .61 1.95 1.30 2.26 1.70 9% 28%

F igure 1. Ove ra l l poin t ing t imes for all d e v i c e s . Homing Time is the time
to move the hand from the keyboard to the device, Positioning Time is the time
to move the cursor to the target. Times are based on a standardized set of
distances and target widths. Averages are computed on the basis of four
users x 600 tr ials/users. Reprinted from Card, Moran, & Newe/I (1983, Fig.
7.4) with the permission of Lawrence Erlbaum Associates, Inc.

184

where D is the distance the hand moves to the target and S
is the target width (see Figure 2). The significance of this
result is that this is the same law that describes movement
time for the hand alone, with about the same constant of
proportionality. The limiting factor in moving the mouse,
therefore, is not in the mouse, but in the eye-hand
coordinate system itself. That, in turn, means the mouse is
nearly optimal, at least with respect to the set of muscles
used. Therefore, designing a device that is faster than the
mouse would be difficult.

Here was a prototypical example of the kind of theory
we wanted to build--a model precise enough to enable
designers to perform back-of-the-envelope calculations, a
model that identified key constraints in the design space for
pointing devices. With this model we could be sure that the
data giving comparisons among devices would probably
generalize to new situations, because we knew the main
factors that governed the results. Furthermore, the model
provided guidance for interface designers: make distant
buttons large, for example. These studies were heavily used
in the debate within Xerox that led to the decision to depart
from tradition by including a mouse with the new Star
product.

3. T h e Cogni t ive In te r face : Cogni t ive Skil l

The Model Human Processor

An interesting result of the mouse study was the way
an evaluation of pointing devices led to a consideration of
human information processing charactcristics. This
experience pointed to the need for an engineering model of
users that would summarize such characteristics. We knew
of many phenomena scattered in the literature of
psychology, such as Fitts's law, that would be helpful for
system design.

To someone who is not a specialist, such as a designer,
this literature appears disorganized and contradictory.
Psychologists love to split hairs and find small
contradictions in published models. The robust but
approximate generalizations that might be made to work for
engineering tend to get trampled in the debates. Although
we had the notion of such a model from about 1974, it
wasn't until 1982, when we were nearing the completion of
our book, that we were able to formulate it. The model,
called the Model Human Processor, was inspired by the
processors, memories, and switches (PMS) notation of Bell
and Newell (1971) for describing the architecture of
computing systems. It was a simplified architecture of the
user, described in terms of three processors, four memories,
19 parameters of these, and 10 principles of operation
(Figure3).

As an example of the sort of calculation that can be
done with the Model Human Processor, consider the ease
where a programmer is programming a video game version
of billiards. He needs to know how long he has after the
collision of two balls to compute the balls new trajectory

..• 2

|
I -

_t

I I I I I I - -

MOUSE --.e-
Tp., = 1.03 + .096 log 2 (D/S + .5)

0 I I I I I I
0 1 2 3 4 5

Ioti 2 (D/S + .5)

F i g u r e 2. P o s i t i o n i n g t i m e fo r t h e m o u s e as a funct ion of
F i t t s ' s I n d e x of Dif f icul ty. The fit of positioning time data to the
straight line in the figure shows that time for the mouse is
governed by Fitts's Law (is proportional to Fitts's Index of
Difficulty). The constant of proportionality, .096 sec/bit (= 10.4
bits/sec), is approximately the same value" as for pointing with the
hand alone. Reprinted from Card, Moran, & Newell (1983, Fig. 7.8)
with the permission of Lawrence Erlbaum Associates, Inc.

before the illusion of causality breaks down. The Model
Human Processor tells us that every event that occurs
within 100 msec will be perceived as a single event, so a
rough estimate is 100 msec. But it also recognizes that
second-order phenomena can change this number, so it also
supplies a range of uncertainty for this number (in this
instance, 50 to 200 msec).

In this case, we can say that if the programmer can
make the balls move within the 50 msec lower bound for
this parameter, then it is pretty certain that users will
perceive the collision as the cause of the balls change in
direction, regardless of secondary effects such as brightness
or contrast ratio of the screen.

The Model Human Processor can be used to compute
predictions about human performance: how fast people can
read, how-fast they can scribble, the effect of different
abbreviation schemes on memory error, and so on.
Derivations based on the Model Human Processor were
used to set the maximum velocity of the mouse on the
workstation for the Xerox Star.

Text Editing and Cognitive Skill

The Model Human Processor also contains, as one o f
its principles of operation, Herbert Simon's bounded
rationality principle. Our version of this principle may be
stated:

A person acts so as to attain his goals through
rational action, given the structure of the task; his

185

inputs of information, and boutided by limitations
upon his knowledge and processing ability. (Card,
Moran, & Newell, 1983).

That is, in order to predict a person's behavior, one needs to
analyze the task he is trying to do, because the person will
simply do what is rational to accomplish the task,
constrained by limitations in his knowledge and ability to
process information. Studies of how people solve problems
had shown (Newell & Simon, 1972) that their behavior
could be modeled as a search through a space of states of
the problem, a problem space. We expected that in studies

of human-computer interaction we would find users
searching through problem spaces to accomplish goals,
trying various solutions, backing off and taking other tacks
when they ran into trouble.

Two early decisions we made led us to results which
were contrary to our expectations. Although we had come
to PARC initially with the intention of studying computer
programming, we decided once we arrived that there were
strategic advantages to studying text editing. A second,
tactical, decision was to work with expert subjects rather
than novices, in order to have more stable behavior to
analyze. Further, to make sure that all our subjects had the

/ z U M - ~ .

KLT M = Semantic

Figure 3. The Model Human Processor memories and processors. Depicted
schematically in the figure are the memories, processors, and constants used for making
simple computations. The basic architecture of the model can be summarized thus: Sensory
information flows into Working Memory through the Perceptual Processor. Working Memory
consists of activated chunks in Long-Term Memory. The basic principle of operation of the
Model Human Processor is the Recognize-Act Cycle of the Cognitive Processor: On each
cycle of the Cognitive Processor, the contents of Working Memory initiate actions
associatively linked to them in Long-Term Memory; these actions in turn modify the contents
of Working Memory. The Motor Processor is set in motion through activiation of chunks in
Working Memory.

Predictions are made using time constants from the figure and a set of associated
Principles of Operation: (P0) The Recognize-Act cycle of the Cognitive Processor; (P1) The
Variable Perceptual Processor Rate Principle; (P2) The Encoding Specificity Principle; (P3)
The Discrimination-Principle; (P4) The Variable Cognitive Processor Rate Principle; (PS)
Fitts's Law; (P6) The Power Law of Practice; (P7) The Psychological Uncertainty Prinicple;
(P8) The Rationality Principle; and (P9) The Problem Space Principle. Reprinted from Card,
Moran, & Newe/I (1983, Fig. 2. 1.) wit,h the permission of Lawrence Er/baum Associates, Inc.

186

same goals in mind, we presented them with a fairly explicit
task--the "manuscript editing task"--which required them
to work fiom a marked-up manuscript, making the changes
explicitly indicated.

When we analyzed videotaped protocols of our
subjects doing this task, we were surprised to find little of
the search behavior of problem solving that we had
expected. Subjects simply looked at the tasks and did them.
The tasks were not problematic. The subjects had done
similar tasks many times before, and had built up a large
repertoire of methods that could be applied to the tasks.
This wasn't problem solving; we came to call it cognitive
skill and set out to build models to characterize and predict
this mode of behavior.

We applied our theories of human information
processing to the kind of specific skills necessary for the
text-editing task. The result was a class of models in which
the user's cognitive structure consists of four components:
(1) a set of familiar Goals that the user would recognize
when faced with a specific task; (2) a set of primitive
Operators (actions) that the user was skilled at performing
and could deploy whenever necessary; (3) a set of Methods,
consisting of "compiled" sequences of subgoals and
operators, that the user could use to attain his goals; and (4)
a set of Selection rules that enable the user to choose among
competing methods for goals. We call a model specified by
these components a GOMS model (Figure 4 shows an
example of one). Together, these components constitute
the user's cognitive skills for performing tasks. If a user has
enough knowledge of this kind, it isn't necessary to use
problem-solving strategies. All that is needed is to examine
the task, characterize it in terms of a specific goal, select the
appropriate method, and then execute it.

In order to test our GOMS models, we ran a set of
experiments to determine whether we could explicitly
specify this kind of GOMS knowledge and thus predict
what users would actually do. We also wanted to learn how
the degree of resolution--the grain of specified detail of
such a model--affects the degree of accuracy of predictions
based on the model. We expected fine-grained models to
yield increased accuracy. Knowing that it takes a lot more
work to develop a fine-grained model, a practical question
related to the applicability of our models was whether the
additional work of constructing a fine-grained model was
worth the effort.

To find out, we built a family of models in the GOMS
framework that characterized the behavior o f users of a
specific computer text-editing system and ran experiments
to test our predictions fiom these models. We were
surprised to discover that fine-grained modcls did not yield
a wordlwhile or even a significant increase in prediction
accuracy (Card, Moran, & Newell, 1976, 1980a). More
felicitous, practically speaking, was our discovery that even
the crude models seemed to capture and predict behavior
fairly well. These properties suggested that the GOMS
model could be turned into the kind of engineering tool
that a designer could use to model and predict skilled user
behavior in computer-mediated tasks. That was what we
proceeded to try next.

KEYSTROKE LEVEL
M o d e l K2:

GOAL: EDIT-MANUSCRIPT

GOAL: EDIT-UNIT-TASK

. GOAL: ACQUIRE.UNIT-TASK

• GOAL: TURN.PAGE" [slle betow)

GOAL: GET-FROM-MANUSCRIPT*

GOAL: EXECUTE-UNIT.TASK

• GOAL: LOCATE,LINE

CHOOSE-COMMAND
. . . . [se lec t GOAL USE-QS-ME'i~HOD
. . . . GOAL: SPECIFY.COMMAND"

GOAL: SPECIFY,ARC"

. . . . GOAL: USE-LF.METHO0

GOAL: SPECIFY-COMMAND']

. . . . GOAL: VERIFY,LOG"
GOAL: MODIFY ,TEST

. . . . CHOOSS,COMMAND

. . . . [se lec t GOAL: USE-S,COMMAND

. . . . GOAL: SPECIFY.COMMANO"

. . . . GOAL: SFECIFY.ARG °

GOAL: SPECIFY-ARC"
. . . . GOAL: USE-M.COMMANO
. . . . GOAL: SPECIFY.COMMAND"

. . . . GOAL: SPECIFY-COMMAND"

. . . . GOAL: SPECIFY-ARC"
GOAL: SPECIFY-COMMAND °]

. . . . GOAL: VERIFY-EDIT"

. r e p e a t u n t i l n o m o r e u n i t tasks

. . i t task not remembered
, . . I t at end o f m a n u s c r i p t Page

. . f f a n edit task was l o u n d

. . . i t task not on current f i n e

. r e p e a t u n t i l a t l i n e

. repeat until at text

• E x o a n s i o n of goals aoPearing several t ime~ :

GOAL: TURN.PAGE
• LOOK-AT-MANUSCRIPT . reoeat twice
. ACTION
. MOVE-HAND , r e p e a t tWiGS

, TURN-PAGE
GOAL: GET-FROM-MANUSCRIPT
, LOOK-AT-MANUSCRIPT

• SEARCH,FOR

. LOOK-AT.DISPLAY . optional
GOAL: SPECIFY ,COMMAND

. GOAL: GET-FROM,MANUSCRIPT" , i t not e/ready selected

. CHOOSE.COMMAND , i l not already selected

. GOAL: TYPE-STRING"

GOAL: SPECIFY-ARC
• GOAL: GET-FROM.MANUSCRtPT* . o p t t o n a l

• CHOOSE.ARC
• GOAL: TYPE-STRING'

GOAL: VERIFY
• LOOK-AT-DISPLAY

• GOAL: GET.FROM-MANUSCRIPT" . O p l i o n s l

• COMPARE
GOAL: TYPE,STRING
. HOME . optional
. LOOK.AT.KEYeOARD . o p t i o n a l

• LOOK-AT-DISPLAY . optional
. TYPE.STRING

Figure 4. GOMS Model K2 fo r the text editor POET. This
model has a grain of about 0.5 see/operator. The user is using a
line-oriented editor to make changes to a computer file previously
marked on a paper manuscript. Reprinted from Card, Moran, &
Newell (1983, Fig. 5.12) with the permission of Lawrence Erlbaum

Associates, publ ishers.

The Keystroke-Level Model

In simplifying the GOMS models into an engineering
model that we could hand to a designer, we constructed an
idealized prediction problem:

Given a task (possibly involving several
subtasks), lhe command language of a system,
the motor skill parameters of the user, the
response time parameters of the system, and
the method used for the task, predict how long
an ~xpert user will take to execute the task
using the system, providing he uses the method
without error. (Card, Moran, & Newell,
1980b)

187

The Keystroke-Level Model enables a system designer to
make such predictions with a "back-of-the-envelope" style
of calculation.

To do the calculation, the designer codes the method a
user employs to do a task in terms of a set of operations
derived from one of the fine grain GOMS models (Figure
5). In this simplified model, all keystrokes are assumed to
take a constant amount of time; and pointing with the
mouse is also assumed to take a constant amount of time.
Mental activity by the user is reduced to a single generic
mental preparation operation, and rules governing when it
will occur are provided.

A typical use of the model to analyze a method is given
in Figure 6. This method is one way in which a
hypothetical text-editor could be used to replace a word
recently typed by the user. Each action of the method is
described in terms of the operators of the model, then a
time for the method is computed. In this case, the method
is expected to take the same amount of time regardless of
how many words back the word to be replaced is located.
Figure 7 shows the expected time for performing this
methods and two other methods available in the editor as a
function of the number of words back the to-be-changed
word is located. It can be seen that the time profdes of the
three methods are quite different and that each is fastest at
different times.

Operator Description and Remarks Time (Nc)

P

H

D (J D , I o)

M

R(t)

PRESS KEY OR BUl-rON.
Prouing the ~HIFT or CONTROl. k, By coun~ ~ a
mparato K o~ation. Time wu'f~ wil~ the tyl~ing skin of
the tmr; the following shows the range of tyll~Cal values:

Best typist (135 wpm) .08
Good typist (90 wpm) . t 2
Average ~illed typist (55 Wlm'n) .20
Average non-secretary typist (40 wprn) .28
Typing random letters .50
Typing complex codes .75
Worst typist (unfamiliar with keyboard) 1.20

POINT WITH MOUSE TO TARGET ON A DISPLAY. 1.10
The Ume to point v'~les ~ di~anoe and l~rget ~dze accorcling
tO FlttS'S Law, ranging from .8 to 1.5 mc, WilD11.1 bo(nO an dwo~aOe,
This operator does not inc~de me (.2 eoc) button prm that often
fo~lows. Mouse pointing time is else a good eMimate for o4her efficlec~t
analogue po~nt~ng devCes, auch m joysUaks (me Chapter 7).

HOME HAND(S) ON KEYBOARD OR OTHER DEVICE. .40

DRAW a O STRAIGHT-LINE SEGMENTS OF TOTAL
LENGTH I O CId. .9m 0 +. 1610
Tffis m a ~ ' y ms~r'~tod o~ 'a tor ; i / a ~ n ~ ~ a t drawin~ is
done with the mourn on s syslm Ihat con~'ains all line to
fall on a Iqt~'e .58 cm ghd U~m vary in their drawing ~JII;
II~,e time gwen is an ~tdKle vllue,

MENTALLY PREPARE. 1.35

RESPONSE BY SYSTEM. t
Different CO~SnCM requimdiffecmlt re~0onae fillies, The reeponse
time m counted only if it cauus the umr to wait.

F i gu re 5. The o p e r a t o r s of the K e y s t r o k e - L e v e l Mode l . The
f igure lists the operators needed to analyze user interface methods
and to make calculat ions of user performance with these methods.
Reprinted from Card, Moran, & Newell (1983, Fig. 8.1)with the
permission of Lawrence Erlbaum Associates, Inc.

Even though our GOMS study suggested that simple
models could be effective, and even though the
Keystroke-Level Model was a careful simplification of one
of the GOMS models, we felt that it was necessary to
rigorously text the explicit performance assumptions of the
model. To validate the Keystroke-Level Model, we ran a
large set of experiments in which people performed tasks
with text editors, graphics editors, and executive

M e t h o d R (Replace) :
Terminate type-in mode
Point to target word and select it

Call Replace command

Type new word
Terminate Replace command

Point to last input word and select it

Re-enter type-in mode

T,x,oae = 4t M + 10.5t~ + 4t H + 2tp

= 12.1 sec.

MK[ESC]
H[mouse] P[won:l] K[YELLOW]

H[keyboard] MK[R]

4.SK[word]
MK[ESC]
H[mouse] P[word] K[YELLOW]

H[keytx~rd] MK0]

F igure 6. Encod ing o f M e t h o d R. Use of the Keystroke-Level

Model to describe one possible method in a mouse-based display
editor for replacing a word previously mistyped. It is assumed the
word is still visible on the screen. Reprinted from Card, Moran, &
Newel/ (1983, p. 289) with the permission of Lawrence Erlbaum
Associates, Inc.

14

i i S S S S S ~

0
0 5 10 15

n (words)

F igure 7. E x e c u t i o n t ime of t h r e e m e t h o d s for the
m i s s p e l l e d - w o r d t a s k as a f u n c t i o n o f n. This f igure shows the

use of the Keystroke-Level Model for the parametric comparison of
three dif ferent methods for accomplishing the same goal. In this
case each method appears to be super ior in a certain range of n.
Reprinted from Card, Moran, & Newell (1983, Fig. 8. 12a) with the
permission of Lawrence Erlbaum Associates, Inc.

188

subsystems. The results (Figure 8) showed a good fit
between predictions derived from the model and observed
times required for the tasks. Therefore, our simple
approximative model would be of some use in making
practical time estimates.

The Keystroke-Level Model has actually proved useful
in real system design. One application was the
determination of the number of buttons on the mouse for
the Xerox Star product. Several schemes for selecting text
in the Star text editor were proposed. These schemes
required different numbers of buttons. The goal was to
make a mouse with the smallest number of buttons
possible, so that it was easy to learn to operate.
Experiments to test the schemes were reasonably easy to
run with novice subjects. Everyone is a novice subject on a
new system, and being a novice doesn't require training.
But understanding how well the schemes would work for
expert users (which most users would be for most of their
time on the system) was expensive, because a long time
would have to be spent training the users. The solution was
to run experiments for novices and to use the
Keystroke-Level Model for predicting expert performance.

The Keystroke-Level Model allowed us to carry
through, at least in regard to a very specific kind of
behavior, part of our original vision of packaging
psychological knowledge into a model that designers can
use to calculate user performance with a variety of
interactive computer systems.

50 , , , , , r , i , i , • , • , ,

30,

20~

~ 15 ~ ~ o o
~ 10

~6 q~
D~/~ * Text editors

I~ 4 o

Z Graphics editors
0 / 0 MARKUP / C) DRAW

SIL Ex!!!AReWKs:iystem|

• All subsystems

, , , . = . i . i = = . i • I ,
2 3 4 5 6 8 10 15 20 30 40 50

Predicted Execution Time (sac)

F i g u r e 8 . P r e d i c t e d v s . o b s e r v e d e x e c u t i o n t i m e s in t e s t s

o f t h e K e y s t r o k e - L e v e l M o d e l . P r e d i c t e d e x e c u t i o n t i m e s w e r e

c a l c u l a t e d f r o m t h e K e y s t r o k e - L e v e l M o d e l . O b s e r v e d e x e c u t i o n

t i m e s c o m e f r o m e m p i r i c a l o b s e r v a t i o n . Reprinted from Card,
Moran, & Newe// (1983, Fig. 8.6) with the permission of Lawrence
Erlbaum Associates, Inc.

The Unit Task

Not all skill characteristics can be reduced to simple
counting, however. In studying text editing, we observed a
characteristic of cognitive skill that is fundamentally
cognitive, namely the organization of user behavior into
short, quasi-independent tasks, which we call unit-tasks.
Figure 9 shows a typical timeline of user behavior, in this
case from a protocol of an electrical engineer using a
graphic CAD system to design a VLSI circuit. The figure
shows that the behavior is divided into chunks, each
consisting of a a few seconds of pause (to formulate a task to
do) followed by a few seconds of activity (to execute the
task). Each think-execute chunk of behavior is a unit task.

The unit task structure of cognitive skill is interesting
because the performance limitations of the user show
through the purely rational organization of his behavior.
The most significant reason why the unit task breakdown of
behavior arises is because of limitations in the user's
working memory. If the user can manage input and output
streams in his working memory, then the user's behavior
will have a continuous structure, as in touch typing from a
manuscript But, when conditions on the inputs and
outputs do not allow this, then behavior must be structured
into a series of unit tasks.

Time I : : : : : : . . .

T r a n s c r i p t i o n P h a s e

0 : 1 8
0 : 5 5
1 : 0 6
1 : 2 5
1 : 3 6
Z : 1 7
Z : 5 0
3 : 3 0
3 : 4 1
4 : 0 1
4 : Z 2
4 : 3 1
4 : 5 2
5 : 2 3
5 : 3 0
5 : 3 8
6 : 0 0
6 : Z 0
6 : 4 4
6 : 5 7
7 : 2 3
7 : 4 6
8 : 1 1
8 : 3 3
9:01
9 : 1 4
9 : 4 5

1 0 : 1 8
1 0 : 3 6
1 0 : 5 4
11:18
1 1 : 4 4
11:46
1 2 : 2 1
1 3 : 0 5
1 3 : 0 9
1 3 : 4 7
1 4 : 0 7

....... DODD=DDD=DDDDDOODD=DDDD=DDDDDD

. D=D=D

. D===DDDDDDDDDD

. DD==DD

......................... AAAAAAAAAAAAAAAA

. DDDDOD===DDDD=DDDDDDDDD

........ DDD=DDDDDDDDDD==DDD=D==DDDDO

. . . . DDDD==DDDDD

........ O DD

............. AAAAAAAA

. A=A

. DDDDDD=DDO==DD

. D=DD

. DD

. A=A

. DO DDDDD=DDD

. D==DD

. DDDD=DDDDDDDDDD
- - - D - D D==DD
. DDDDDDDDD=DDDD
. D - - - D D D
. AAAAAAAA==AAAAA
. A=A=AAA=AAAAAAA
. D===DDDD=DDDD==DDOD
. D=DD
. DDDD==DDD=DDD==DDDDD
. D==D=DD=DDDDDDDDDOD
. DDDD==DDD===DDD
. DD=DDDDD
. O==D=DD===DDD ZZ:~'DD==ODDD'=DOOOO

A=AA
. DDDDD=ODDDD=DDDDDDD====DDDD

I : : : : : : 2777£ :~? D

Symbol Code:

Task acquis i t ion
Draw task execution

A Alter task execution
M Dimension task execution
C Check task execution
= Intra-execution pause
+ Pause wi th in Move command

F i g u r e 9 . T i m e l i n e r e p r e s e n t i n g t h e u s e r ' s b e h a v i o r

s e q u e n c e i n a V L S I d e s i g n s e s s i o n . E a c h s i n g l e - c h a r a c t e r

s y m b o l r e p r e s e n t s o n e s e c o n d o f b e h a v i o r . T h e s y m b o l s e q u e n c e

b e g i n s o n a n e w l i n e a t t h e b e g i n n i n g o f e a c h u n i t t a s k , a n d t h e

c l o c k t i m e i s t h e t i m e a t t h e b e g i n n i n g o f t h e u n i t t a s k . Reprinted
from Card, Moran, & Newe// (1983, Fig. 10. 7) with the permission of
Lawrence Erlbaum Associates, Inc.

189

Figure lO portrays a trace of the working memory load
of the user, based on logical considerations of when
information must be available in memory in order to do a
task. As we can see, memory requirements build from a
low point at the start of a unit task to a high within the trait
task, where information for the task has been assembled,
and back to a low point at tile end of the unit task, where
the information is no longer needed. If the information in
working memory should reach a level higher than the
working memory capacity, then user performance will
stiffer, usually manifested by the user committing errors.
To avoid these errors, the user must break down the overall
task into smaller (unit) units, each of which can be managed
in the available working memory.

Working 3
Memory
Load

5
4

2
1
0

i i I i i I I I D
T aSkLocation ~ ~ ~ - ' ~ ~ / / / / / / / / / / / / / / / / / / / , ~

I J , I , I I

, [I I I
New T. , I:~:;~A)~Z~-:~'~J~Y////////////////////////////A I

LOCAT,ON, !LOCAT,ON, ! P i
Oi,,lay ~ I 1 ~ 1 I I I

Point 0 ' 1 © I I I I V I
Cu.o, . ~ I
Status I

System
Status

Execution ~ l i i I

l i d

I

I
D

I
[]

I
I
I
I
I
I
I
1
I

Figure 10. Data in Working Memory during a unit task. This
figure is an hypothetical trace of the performance of one unit task.
Time runs to the right on the horizontal axis. The bars indicate the
time during which each piece of information about the task is
needed. The arrows indicate the initial time data is available and
the subsequent times it is needed. The histogram on the top plots
the total Working Memory load over time, showing how the load
peaks within a unit task and dips between unit tasks. Reprinted
from Card, Moran, & Newel/(1983, Fig. 11.12) with the permission
of Lawrence Erlbaum Associates, Inc.

Unit-task behavior is at present a theoretical notion
based on empirical observation (see Card, Moran, Newell,
1983, for further discussion). But it represents an important
feature of user behavior--a sort of "cognitive
rhythm"--that should be taken into account in designing
user-computer interfaces that are sensitively tuned to the
user's capabilities.

The Psychology of Human-Computer Interaction

In 1978, one of us had completed a doctoral thesis
(Card, 1978) that consolidated much of the work we had
been doing. The thesis helped convince us that the time
was appropriate for writing a book presenting our vision of
an applied science of the user. Work on the book gave us
the opportunity to focus on the larger vision instead of just
the pieces, and we became aware of some missing unifying
theoretical work that we felt we had to do.

Although we had several calculational models (Fitts's
law for the mouse, GOMS models, the Keystroke-Level
Model, plus other minor models), there were questions of
relating these to the classical literature in cognitive
psychology and human factors. We had long sought a
unifying framework for tying together the relevant
psychological knowledge about users (one of our 1974
working papers called this conception the "Handbock of
Cognitive Man"), but had made little progress. In
preparing the book we revived this goal and came to a
much more satisfying conception, the Model Human
Processor, wMch captured the relevant psychological
literature in the terms of a unified, approximative model.
This model also provided a foundation for our o t h e r
models.

The other big missing piece for us was to understand
the relationship between the cognitive skill we had
discovered and the classical notion of problem solving in
cognitive psychology. Here we built a theory of the
behavioral continuum between problem solving and
cognitive skill and showed how practice on a task would
gradually chan~ge problem solving behavior into skilled
behavior. This is all active area of research in cognitive
psychology today (e.g., Anderson, 1981).

The result of these efforts was the book, The
Psychology of lIuman Computer Interaction (Card, Moran,
& Newell, 1983). However, the book represented only the
main line of our research efforts that fit together into a
tightly knit view. There were many other areas of our work
that we decided not to put into tile book, such as the issues
of learning and of users' mental models.

4. The Conceptual Interface: Mental Models

The early effort of the AlP Project was focused on
understanding expert user performance. As we explained
in the previous section, skilled performance is characterized
by methods that users know and quickly execute to

190

accomplish tasks. That is, we were focused on what is
typically called procedural knowledge ("how-to-do-it"
knowledge). However, from the beginning, we were aware
that methods are not sequences of meaningless actions, but
that expert users also have an understanding of what the
procedures cause the machine to do. That is, the expert
users have some sort of mental model of what is happening
inside the computer Chow-it-works" knowledge).

The first AIP memo in 1974 proposed the notion of the
"user's model," which refers to the conceptual model that
the user can have of the system. A user's conceptual model
is distinct from (but related to) the designer's
implementation model. It is an abstraction of the system's
architecture and software structures--the conceptual
entities that the architecture and software implements--that
is simple enough for non-technical users to grasp. (For
example, a user might not know how the mechanism of the
delete buffer of a text-editor works, but would simply know
that the deleted text goes into a "clipboard.") A user's
model would typically include knowledge of where
information is stored (core memory, local disk files, remote
file servers). It is important for the user to have an
understanding of these kinds of features, for they are often
not visible to the user.

The user's model provides an integrated package of
knowledge that allows the user to predict what the system
will do if certain commands are executed, to predict the
state of the system after the commands have been executed,
to plan methods for novel tasks, and to deal with odd error
situations (by characterizing the system's state according to
the model, then choosing operations necessary to leave that
state).

Early Encounters with Conceptual Models

Early in our research we tried to write down
rudimentary descriptions of the elements of conceptual
models, which included the conceptual objects, their
properties, how they related to each other (the characters in
a text editor, for example, including the notion of a blank
space as a character), and the conceptual operations that
could be performed on those objects (inserting, moving, or
deleting characters, including blank spaces).

Given the obvious importance o f this kind of
knowledge for the user, we were surprised to find that
almost no system documentation ever clearly laid out a
conceptual model of the system for the user. We were also
surprised to discover what a difficult inductive task it is to
specify such a model, even for a seemingly simple text
editor. It was a detective game in which we were forced to
hypothesize and test elements of possible models in order to
find a succinct conceptual characterization of how the
system worked. It was a game that took us days (not
minutes) to do, hence not a game in which busy users were
likely to engage.

It is clear that users attempt to make sense--by
building mental models--of the behavior of a system as

they use it. If a simple model is not explicitly or implicitly
provided, users formulate their own myths about how the
system works. These user-invented models may be
inaccurate or misleading outside the very limited situation
from which they emerged. Therefore, we believed that if
the user is to understand the system, the system has to be
designed with an explicit conceptual model that is easy
enough for the user to learn. We call this the intended user's
model, because it is the model the designer intends the user
to learn. Just what mental model the user actually forms is
another issue, which depends on how clearly the intended
user's model is designed, how well it is implemented, and
how well it is documented.

Although we were very concerned about the mental
model issue, we didn't pursue explicit studies for several
reasons: we didn't have a satisfactory methodology for
studying it, we didn't have satisfactory representations of it,
and we were busy pursuing the performance issues we have
discussed. Still, we felt that the intended user's model was
an important consideration in the user-interface design
process.

User Interface Design Methodology

The practical application of our concerns came when
Xerox began arranging the technology transfer between
PARC ,and the Systems Development Division (SDD),
which was created to develop office system products based
on the research at PARC. In the Spring of 1976, a joint
PARC/SDD committee (which included one of us) was
formed to advise SDD on the design of the user interface of
the office systems.

The committee decided not to try to design an actual
interface, but to propose a methodology for SDD designers
to follow in designing their interfaces. The methodology
(Irby et al., 1977) included four parts: (1) analyze what tasks
the user will want to do and the steps they go through to
accomplish the tasks; (2) design an intended user's model in
terms of which the tasks may be cast; (3) design a command
language to make that model work; and (4) design an
information display to reflect the operations of the system
in terms of the conceptual model.

Thus, we recommended that the designer should lay
out an intended user's model before designing the
command language and the information display. The
whole design effort should be oriented toward keeping this
model "under control," i.e., keeping it simple, consistent,
and clear enough for users to grasp.

The original designers of the Xerox Star interface, the
workstation product SDD built, used this methodology.
The conceptual model was clearly laid out in the system's
functional specifications, and the designers worked hard to
keep the model consistent. Although this model was
represented informally, the fact that the designers focused
on it contributed heavily to the widely recognized success of
Star's user interface. The conceptual model is an
under-appreciated aspect of Star's interface, but Star's more

191

widely-touted icons and desktop metaphor only make sense
with respect to its underlying conceptual model.

William Newman, another member of the committee,
presented this methodology in the second edition of his
book with Bob Sproull (Newman & Sproull, 1979).

Empirical Studies

By 1979, we were ready to tackle some empirical
studies in order to understand the role of the user's model.
The first study was an attempt to elicit the knowledge that
real users of real systems have about the systems they use
every day. The system we chose to study was the Alto
Executive, a system which was in wide use at PARC for
several years by nontechnical support people as well as
programmer5.

We wanted to find out what Alto users knew about the
Executive. The goal was to see whether we could find some
kind of mental models buried in the user's knowledge. The

Problem No-Model Model
Type Use rs Use rs

Routine 98 9,5

Complex 87 88

Invention 25 67

Figure 11. Percentage of problems correctly done in the
calculator experiments. There were two groups of users; one
was taught an explicit conceptual model of the calculator's stack
and the other group was prevented from having such a model.
There were three types of problems, each of a different difficulty
relative to what the users were taught.

methodology we used was to transcribe interviews with
several users into logical propositions and then classify
them into categories.

The surprising result was that many nontechnical
expert users (e.g., secretaries who used the system
effectively every day) gave no evidence of having anything
but very shallow models of how the system worked.
(Perhaps we shouldn' t have been surprised, because no
conceptual model was documented and training was
informal.) This led us to consider more carefully the role of
the user's model.

In order to characterize the role a user's mental model
would play in the use of a system, we performed
experiments with the simplest kind of system we could

devise, a simple stack-based calculator (Halasz & Moran,
1983; Halasz, 1984). We thought that a model of a stack
might well be useful to help rationalize what for many users
is a nonintuitive postfix command language. The formal
experiment compared one group of users who were taught
an explicit conceptual model of the stack, and a group o f
users who were carefully shielded from the stack model.
The model group was trained in relation to a specific model
and were told how that model related to the methods for
solving arithmetic problems. The no-model group was only
taught specific methods for performing the same tasks.
Then we gave the two groups sets of problems that were
categorized as simple routine tasks, slightly more complex
tasks, and very difficult "invention tasks" (which required
the user to invent new methods to solve).

The results (see Figure 11) revealed no difference
between the two groups in both the routine and complex
problems, but the model group performed much better on
the invention tasks. The most surprising result was that
even some of the no-model group were able to perform
some of the invention tasks. We wanted to account for
these results according to the cognitive theories we
understood, so we analyzed the protocols gathered from the
use,'s as they performed the tasks.

No-Model Users Model Users

Problem Solving Problem Solving
Problem Skilled Skilled
Type Method Model Methods Task Method Model Methods Task

Execution Space Space Space Execution Space Space Space

Routine 90 0 8 2 89 11 0 0

Complex 94 0 6 0 91 7 0 2

Invention 2 0 84 14 7 71 19 3

Figure 12. Partitioning of the users' behavior in the calculator experiments. The
users' behavior was devided into four behavioral modes: skilled method execution plus three
problem solving modes, which are distinguished according to which problem space they were
working in. The partitioning is based on an analysis of verbal protocol records; each line of
protocol was categorized into the mode it manifested. The numbers in the table are the
percentages of lines of protocol in each behavior mode. We believe that this measure
underestimates the amount of work in the task space.

192

We divided the users' behavior into skilled method
execution, as we had modeled in our earlier studies, and
problem-solving. We found (see Figure 12) that in the
routine and complex problems, the behavior was almost all
skilled method execution: the subjects had been taught
what to do, and they did it; even for the complex problems
it wasn't difficult to knit together the methods they had
learned for solving the problems.

Our hypothesis going into the study was that the
conceptual model we taught the model group of users
would provide them with a problem space through which
they could search in order to find solutions. According to
this theory, the user would characterize a difficult
"invention" task in terms of this problem space: the state of
the system when they started, the state of the system they
would like to achieve, and a set of operations to move them
through that space; they would solve the problem using
generic problem-solving strategies.

However, when we analyzed the users protocols, we
found two other kinds of problem spaces in which the users
worked when they were problem solving. One was a task
space within which they manipulated the given arithmetic
task in various ways, such as dividing it into subtasks that
could be solved by known methods. Another space in
which they worked was a methods space, where they took
known solution methods as strings of steps, manipulated
those steps in various ways to produce new methods, and
tried them to see how they worked.

We found that the most critical (although not very time
consuming) problem solving was in the task space, where
the user analyzed the given task into subtasks and delegated
them to the model space or the methods space. The main
difference between the users who had a model and those
who didn't was that they had different problem spaces in
which to work (see Figure 12). The model space was an
effective problem space, within which the solution to the
invention problems could be found; the method space was
not particularly effective, but it was sufficient to allow some
non-model users to stumble onto solutions to some of the
invention problems (often, much to their surprise).

We concluded that mental models can be useful for
novel task situations, but we found that users only use their
models in specific subtasks; there was a lot of switching
between the task space and other problem spaces. Users
were cautious about going into a mode of behavior that
involved thinking through a mental model. Model-based
problem solving appears to be very mentally intensive, so
users avoid it if they can apply cognitive skills. But, if users
don't have appropriate methods available, they will retreat
to some kind of problem solving. In these cases, a good
conceptual model provides an effective problem space in
which to work.

Thus, system designers should think of a conceptual
model of a system as not just a simple view of a complex
system, but as a problem space through which users can
search for solutions to a variety of novel problems. The
conceptual entities and operators in the intended user's

model should be closely related to the kinds of tasks the
users arc likely to do, and the users should be provided with
heuristics for moving through the model space.

Theoretical Studies: Task Mapping

We also worked on a theoretical analysis of conceptual
models to show where they fit into the overall structure of
the user interface. The Command Language Grammar
formalism (Moran, 1978, 1981) shows how models relate to
the task domain, the command language, and the detailed
user-computer interactions. According to this theory, the
conceptual model provides the user with a link between his
task domain and the syntax of the interactive dialogue.
That is, on the one hand the conceptual model serves as the
semantics of the dialogue actions, while on the other hand it
serves as a base into which the task can be mapped into the
system.

Richard Young called this kind of mechanistic
conceptual model a surrogate model (Young, 1983).
Interactions on these issues with Young, who was exploring
the domain of simple calculators, led to the discovery of a
new kind of mental model--task-action mappings (Young,
1981). The properties of radically different calculator
designs, such as algebraic versus stack calculators, could be
best understood by an analysis of how well calculation tasks
could be directly mapped into the actions available on the
calculators. Surrogate models were completely bypassed in
this analysis, which helps explain why people sometimes
seem to get along with systems without having surrogate
models of them.

In further work along this line, we have proposed a
calculus, called ETIT analysis, for task mapping (Moran,
1983). The "fit" of a system to a task domain can be
assessed by enumerating rules for reformulating
system-independent task descriptions ("external tasks") into
system-specific task descriptions C'internal tasks").
Rule-based system description techniques, such as this or
Payne's (1984) task-action grammar, are beginning to
provide a way to help us formalize the fuzzy notion of the
consistency of a system (both internal consistency and
consistency with respect to a task domain). Such techniques
look promising as a way provide system designers with
calculational techniques for predicting the learnability and
"guessability" of systems.

5. The Task Interface: Pondering Ideas

Let us now turn to the role of a science of the user in
the future development of the personal workstation. For
us, the real challenges for user technology are now at the
larger task level in which users are grappling with complex
intellectual tasks. This is, of course, a return to working
directly on a modern version of the original vision of
augmentation workstations.

193

We now have workstations powerful enough to give
each user a personal system equivalent to one that only a
decade ago would have been shared with a hundred other
users, and we are on the verge of major upgrades to even
greater computing and communication power. We now
have a much more developed base for user technology--not
only techniques for designing user interfaces, but also
models for tmderstanding users. Thus, we are now in a
better position than ever before to explore systems that can
really augment human intellectual endeavors.

The challenge is to create systems that, through
intimate cognitive interaction with users, aid them in
structuring and manipulating their ideas. With such
systems to help them, people will then be able to cope with
more and more complex intellectual tasks of all
sorts--authoring books and multi-media presentations,
designing products and programs, composing music,
analyzing experiments, the arguing points of law and policy,
reasoning about scientific and social issues, and on and on.

The key to building such systems is to find ways by
which a user can act on his ideas as objects, just as current
text editors allow him to act on words as objects. This is
difficult, since ideas are often tacit and ill-formed. A means
is needed to externalize the ideas, to get them out of the
user's head and into a form that can be organized and
shaped. Two problems require solution:

(I)

(2)

The user needs new ways to represent his
ideas--to get the user's mind around the ideas,
as it were. For this we can exploit advances in
artificial intelligence and cognitive science.

The user needs new ways to manipulate his
ideas--to get the user's hands on the ideas. For
this we can exploit advances in interactive
computer graphics.

These problems are part of our current research
agenda. In this endeavor we must not only build on our
current base of understanding of the user, but also advance
that understanding. For one thing, we ha~,e to launch
studies into the nature of the complex intellectual tasks we
wish to augment. This calls for a shift in our research
strategy from studying users of existing systems to studying
users of new systems that we ourselves build, which enables
us to understand the nature of the tasks and the limits o f
users and systems for dealing with them. We give
illustrations of this strategy from some of our own current
projects.

Representa~on: Idea Structuring

Word processors and text editors, even powerful ones,
are tailored for the final stages of writing a paper--crafting
the text and graphics of the final product. Outline
processors help with the previous stage of outlining.
Although the latter are sometimes called "idea processors,"
it is clear that idea processing begins well before the stage of

outlining. A genuine idea processor should allow the user
to deal with ideas that are vague and ill-structured and help
him gradually add structure as it is discovered.

We use the term authoring to refer to the larger
intellectual task of gathering information, extracting and
discovering ideas, structuring them, and finally composing
them into a readable product. Authoring in this sense is a
highly general task composed of generic subtasks, as
illustrated in Figure 13. One begins by collecting sources of
information; from these a set of notes (idea-sized units) are
created to represent potentially relevant facts and ideas. As
notes accumulate, they need to be filed in a structure
suitable for retrieval, such as a topic hierarchy. But these
notes also need structures that organize the ideas into
meaningful, coherent themes. Such structures must be
discovered, elaborated, supported by evidence in the notes
and other sources. One then communicates these ideas by
composing them into an interpretable product- -a
document, a slide presentation, or a browsable network of
ideas.

The key research issue here is to help the users develop
explicit mental models of idea structures, so they can see
them, play with them, and evaluate them. This requires the
invention of representations for externalizing ideas and idea
structures. Cognitively, these representations serve the

co __
s e l ~ d a t e

discov

IDEA I
STRUCTURES]

c o m p ~ e r p r e t

Figure 13. Schematic diagram of the generic authoring
task. The boxes are the types of information to be managed in the
authoring process, and the arrows are some of the processes for
generating and transforming the information.

194

users as problem spaces; and new representations can
fimdamentally alter the way they are able to deal with ideas.
Some representations should be "weak" in the sense that
they can easily capture a large variety of even vague ideas;
other representations should be "strong" in the sense that
they can precisely capture and process particular classes of
idea structures; and facilities must be provided to help users
transform weak representations into strong ones.

We are developing a system, called NoteCards, to
explore the broad nature or the authoring task. NoteCards
supports the orienting metaphor of the notecard as a
medium for capturing an idea. Notecards can be stored in
fileboxes and linked into complex sU'uctures, which can
then be viewed in graphic representations (such as the one
shown in Figure 14). NoteCards is designed to be an open,
flexible environment, so that we can use it as a "laboratory"
to explore new representations and tools to support
authoring tasks. Because it is an open system, NoteCards
users are faced with the problem of devising appropriate
ways to use the system, that is, mapping their particular

tasks onto the basic elements of the system, This leads to a
further interface issue of making the environment tailorable
by users themselves to the wide variety of situations that we
encourage them to bring to NoteCards (paper and
documentation writing, scientific and legal argumentation,
instruction authoring, design analysis). Thus, in contrast to
our earlier methodology of observing a controlled, skilled
user population, we are now observing a population of
idiosyncratic, exploratory users.

Manipulation: Idea Browsing

The representations in an idea-structuring environment
must be assimilated and manipulated with facility and
speed. Idea-processing tasks are difficult for users, because
they involve the retrieval, tracking, and manipulation of a
large number of ideas (as is being attempted in Figure 14).
Authoring a paper, for example, may require hundreds Of
notes and scores of references; programming may require
hundreds of routines. But, as the Model Human Processor

:::::::::::::: ,=,=, I LEOAL CONTEXT Im~-~-~lm~'~==i~im~lo~`~n~zr~R~:i:i:i:i:i:i:i:i:i:i::~:::::::::
• - -- i

iiiiiiiiii!!i I I I [e m l i = l ~ # i i l , , , , [,] n , ~ = e n f o r c e a b l e c o n t r a c t C. i is an i m p l i c i t c o n t r a c t to l ease t h e i!~iiiii![!E![;!iiiii!
}iii!}ili!i!i!i;}iiii[i h b e t w e e n F and F" f a r m in T e x a s f r o m Coe fo r a y e a r to ::iiiii~ili~ii!;::;ilililililE;;i!Ei

i i n m=~'I'~n=~eln---=~ bey. when Boo.e arrives in Te:<as I !i!!i::::ii::::i::
:;::::::::::: nnl-'------"_" --" ---V- C breached by P :i! {::~:~ :;::;:::;;

iiiiiiii~i;E H i P = , I i!iii~!!!h,:i~;i~j!!i!!!
::;;:::a::::: [O P E R A T I V E F A C T 8 S Coe t i e -" • - ~ - - ~ " ::
i.W.i.i.::.::.[::.i.i.!.:: I I I I W l ! e t h e r can r e c e i v e :,ayrn,, k ' r e a c h e s t ' h e : i I s T a f f a l] ~ ~ " - - - ~ I r . ~ , _ i

r e h a n • 3 n L=in:l C O I I L I ~ L I ~CI ~ I o (3 ~ ! ~ I I I I : - , " . i P ' t a s u ~ d . t ' t a l e r A B c c n e t l e eat . L E A L R U L E I
i;!ii~ii~i~i! I I I I t r a v e l to n e w loca t i on) fo r I r e a s o n a b l e e , ' r ~ s*s T * " a ~ = * , m = ~ - - = . . a ~ . d .
~ili~iliiiii! l i l t b e g i , f t t ' e in r'eii.~nc~'c~n ,~ t v ' - - ! ,

i'i'i'i'i':'ii!iiiii:iiii !.1111 is ~,:,,:,n~ ,~ I ° ° ° ' ~ ' ' ' ~ : , , . ~ . . , . ~ , ~ , , = u , o , ~
i~!~i~ii!!i .:..'Nil DECCISIC,N take up l ease o
::::::::::::::::::::::::::: :*i| I I I . s T A T U S RLT LES
; . n I I I O O N E - v - ' C O ~ : R a t m n a l e ' . ~ e n t t ~ u ~ z I

I' A ~ - v - c o e : , , , ~ : , ~ : A r ~ = m , ,~u~, I
I=.=~.~e.,=.

~ - " " " " " " " " " ~ " " - - - - - .;,:.:,:.:,;,;.-.-.:.-,-.-.-.-.-.-.,,v.v

. . - - ; : : : : : - : :::::::,~,,:~!i!i~i}i!ilil]iii;ilililililiiiiiiiiiiiil}~i
. ~JlmUO~dE-v-C, OE r~t~ou=ne:Aromncnt t~de--~- I . - - " : i~;i];iiii;iii]iiiii;i!i;i]!:~!i!i!i[!ii!~!:':!!!]!
StatuteofFraudsl~tae I ' ..,. " . . - " " i.".".'.'.'.'.'.'.'.'.'.'i';'i'i'i'?i'???~??i'?i' t ~ ' ================================

• \ - , :::

/ . : : : : : : : : : : : : : : :

~ w ' ~ '] ' " , ;iiiil;ii~i~ii"'"iiiiil;i ii~i!iii!iii~iiiii!i~i~iiiiliiii!~

, ~ - - V ~ ~ . , , . . ~ I i:/:iii:: ::ii :/:iii::iiiiii:: ~iii!:
- : ;iiiiii!iiiiii iiiiiiii':iii!iiiiiiiiiigiii' ii;ii'

.,. , :i:i:[:i:i:]: i:i:i:i: :;:i:?.i:?.;:i:~:;:i: i:i:i:ii:!

,' !!!!i[iiiii!! !i!;!i!i iil;i!!!!!!~!i!i!i!i l!i:::ili

. l'~'~/'~:llationile:An'~umel'tttdi~lule4 iii:::::: :::: i

I ' u ` ' , ° ~ ° ' ' ~ I" :iiii!i!~!;ill iiiii!ii ii!iii~iliiiil}i!iiiilill !i!

F i g u r e 14 . A s c r e e n i m a g e o f t h e N o t e C a r d s s y s t e m . The app l i ca t ion shown is the
analys is of a legal a rgument . A var ie ty of legal ru les must be b r o u g h t to bear in a rgu ing a
par t i cu la r case. The g raph shows how the ru les are re lated by app l icab i l i t y cond i t i ons and by
b ind ings to the par t icu lars of the case.

195

shows, only limited amotmts of information can be handled
in the user's working memory. These limitations lead the
user to structure his behavior into unit-task bursts.

These considerations lead us to ask how a computer
system can compensate for human cognitive limitations.
The display can be used as an external memory to augment
the user's internal working memory. This partly explains
what has made the "'desk-top" metaphor successful: users
can use windows and icons to keep track of more
documents, notes, and messages from other users than with
the previous style of command language interfaces. By
having these things visible as reminders, the user's effective
working memory is increased, enabling him to do more
complex tasks.

But the problem is that these techniques, which work
well with with a few dozen objects, do not scale well up to
the several hundred or even thousands of objects necessary

for the idea-processing tasks we wish to do. Here, it helps
to begin with a better understanding of the nature of the
problem. Again, our method for gaining that
understanding is through approximative models of user
behavior. In this case, we have sketched a model called the
Window Working Set Model (Card, Pavel, & Farrell, 1984)
that analyzes access to screen objects in a manner analogous
to the analysis of virtual memory operating systems.
Informally, this model suggests that screen space itself is the
key constraint and that at some point as the number of, say,
overlapped windows required increases, user performance
will decrease in a sudden and non-linear way, sending the
user into the window version of thrashing.

Thus there are limitations on the uses of current
graphical interface techniques for browsing large sets of
ideas. Advanced graphics systems, however, open up a new
set of possibilities. Figure 15 shows a fiagment of an

Figure 15. Exper imenta l Dandel r is browser for organizat ion charts . The photograph
shows a view of a fragment of an organization chart as seen by a user flying around this chart.
The chart is laid out on a simulated 2-dimensional whiteboard. The user can change his
location in simulated 3-dimensional space, his direction of gaze, and by pointing with the
mouse to indicate focus, the relative sizes of different organization chart boxes. (The
experimental program was written by S. Card, A. Henderson, L. Lovstrand, and B. Verner.)

196

organization chart from an experimental browsing system
we are implementing (the Dandelris, combining a Xerox
DandeTiger Lisp nnachine and a Silicon Graphics Iris
graphics processor). The node that is the user's focus is
largest and is readable in the most detail. Nodes become
smaller with distance from the focus. The user can fly
around this chart to see it from different points of view and
change his direction of gaze; if he points at a node,
indicating a new focus of attention, it grows larger. The
transitions are all animated in real-time, color,
three-dimensional representations to help the user keep
track of the transformed identities of various objects.

Such a display is designed to help the user navigate
among a large number of objects; only a few of these
objects would be visible in detail at any time, but many
more would be visible as orienting cues and retrieval keys.
The visual movement techniques is coupled with other
retrieval techniques for allowing the user to focus on a
limited number of items at a time (as required by our
understanding of user's processing capacity) while retaining
rapid access to a large number of items (as required by our
understanding of the requirements of complex intellectual
tasks). By coupling experimental programming with the
analysis of user behavior, we hope to find theory-based
techniques to aid the user in keeping track of and
maintaining effective browsing and retrieval capability for
large in formation structtlres.

conceptual models provide the basis for users to acquire
mental models, and thus are an important basis for system
design. But mental models are cognitively intensive, and
users will avoid them by attempting to map directly f rom
their tasks to the actions required in a system. Theories o f
task mapping are just beginning to emerge.

At each of the above levels, it has been possible to base
an applied science on a theory of the cognitive mechanisms
tmderlying user behavior. Ateach level, the applied science
was shown to be practical, in particular by being influential
in the design of the Xerox Star.

The challenge for us today is to use our understanding
of users to discover new ways to augment users in complex
intellectual endeavors. Thus, we are concentrating our
effol~s in those areas where users' cognitive limitations need
to be overcome and where users' cognitive abilities can be
aided with computer-based tools. We believe that the most
interesting problems are at the task level: understanding the
nature of complex intellectual tasks and finding ways to
build idea-structuring tools, both representation tools for
structuring ideas and display tools for browsing ideas.

Whereas we once studied users empirically using
existing systems in order to understand the nature of
human-computer interaction, we now use what we have
learned about users to help drive the creation of new
experimental systems.

6. Conc lu s ions

What has been learned about users and bow does this
relate to the original visions of personal workstations? The
short answer is that, unlike the early 1970's when little was
known scientifically about computer users, we now have a
vision of the form of an applied science of the user and a
few areas of knowledge where that vision has been realized.
In this paper we have narrated some of our efforts at
building this applied science:

At the physical interface level, we have discovered that
user performance with pointing devices is constrained by
the information-processing capacity of the user. We have
learned the quantitative law describing this constraint and
have determined that certain devices, such as the mouse, are
at the performance limits allowed by this law.

At the cognitive level, we have learned that routine
human-computer interaction, such as text-editing, does not
involve problem solving, but rather cognitive skills based on
the execution of known methods. We can see the
information-processing constraints of the user show
through this skilled performance in the unit task of users.
We have characterized cognitive skill to the extent of
developing an engineering model for use by user-interface
designers.

At the conceptual level, we have learned that users
often have mental models of the systems they use, and that
such models enable performance of novel tasks. System

197

REFERENCES

Anderson, 3. R. (1981). Cognitive skills and their
acquisition. Hillsdale, N J: Lawrence Erlbaum
Associates.

Bell, C. G., & Newell, A. (1971). Computer structures:
readings and examples. New York: McG raw- H ill.

Bush, V. (1945). As we may think. The Atlantic Monthly,
August.

Card, S. K. (1978). Studies in the psychology of computer
text editing systems. Unpublished doctoral
dissertation, Carnegie-Mellon University, Department
of Psychology.

Card, S. K., English, W. K., & Burr, B. J. (1978).
Evaluation of mouse, rate-controlled isometric joystick,
step keys, and text keys for text selection on a CRT.
Ergonomics, 21, 601-613.

Card, S. K., Moran, T. P., & Newell, A. (1976). The
manuscript editing task: A routine cognitive skill
(Technical Report SSL-76-8). Palo Alto, CA: Xerox
Palo Alto Research Center.

Card, S. K., Moran, T. P., & Newell, A. (1980a). Computer
text-editing: an information-processing analysis of a
routine cognitive skill. Cognitive Psychology, 12, 32-74.

Card, S. K., Moran, T. P., & Newell, A. (1980b). The
keystroke-level model for user performance time with
interactive systems. Communications of the ACM 23,
396-410.

Card, S. K., Moran, T. P., & Newell, A. (1983). The
psychology of human-computer Interaction. Hillsdale,
N J: Lawrence Erlbaum Associates.

Card, S. K., Pavel, M., & Farrell, J. E.. (1984).
Window-based computer dialogues. Proceedings of
IFIPInteract '84, 355-359. London: IFIP.

Engelbart, D. (1963). A conceptual framework for the
augmentation of man's intellect. In P. W. Howerton
and D. C. Weeks (Eds.), Vistas in hoCormation
Handling, Vol. 1. Washington, D.C.: Spartan Books.

English, W. K., Engelbart, D. C., & Berman, M. A. (1967).
Display-selection techniques for text manipulation.
1EEE Transactions on Human Factors in Electronics,
HFE-8, 5-15.

Halasz, F. G. (1984). Mental models and problem solving in
using a calculator. Unpublished Ph.D. Dissertation.
Stanford, CA: Stanford University.

Halasz, F. G., & Moran, T. P. (1983). Mental models and
problem solving in using a calculator. Proceedings of
the CHI '83 Conference on tIuman Factors in
ComputhzgSystems. New York: ACM.

lrby, C., Bergsteinsson, L., Moran, T. P., Newman, W., &
Tesler, L. (1977). A methodology for user interface
design. Palo Alto, CA: Xerox Palo Alto Research
Center.

Kay, A. (1977). Microelectronics and the personal
computer. Scientific American, September, 230-244.

Licklider, J. C. R. (1960). Man-computer symbiosis. IRE
Transactions on Human Factors in Electronics, HFE-I
(March), 4-11.

Moran, T. P. (1978). Introduction to the Command
Language Grammar (Technical Report SSL-78-3).
Palo Alto, CA: Xerox Palo Alto Research Center.

Moran, T. P. (1981). The command language grammar: A
representation for the user interface of interactive
computer systems. International Journal of
Man-Machine Studies, 15, 3-50.

Moran, T. P. (1983). Getting into a system:
external-internal task mapping analysis. Proceedings of
the CHI "83 Conference on Human Factors in
Computing Systems. New York: ACM.

Newell, A., & Simon, H. A. (1972). Human problem
solving. Englewood Cliffs, N J: Prentice-Hall.

Newman, W., & Sproull, R. (1979). Principles of interactive
computer graphics, 2nd ed. New York: McGraw-Hill.

Payne, S. J. (1984). Task-action grammars. Proceedings of
Interact "84: First IFIP Conference on
Human-Computer Interaction, London. Amsterdam:
Elsevier.

Young, R. M. (1981). The machine inside the machine:
users' models of pocket calculators. International
Journal of Man-Machine Studies, 15, 51-86.

Young, R. M. (1983). Surrogates and mappings: two kinds
of conceptual models for interactive devices. In D.
Gentner & A. L. Stevens (Eds.), Mental models.
Hillsdale, NJ: Lawrence Erlbaum Associates.

198

