Intelligent User Interfaces

MICHAEL BERNSTEIN CS 376

If you wanted a smart doorbell...

- To automatically control entrance to your room
- To let in possible donors for your Stanford education

ance to your room your Stanford education

2

Paint the areas of interest

Crayons: camera-based interaction [Fails and Olsen, CHI '03]

Directmanipulation training

204	ICE.Craysma.Colorifie	cognizer Test LII
Contra	ats .	
200m		2.58
Guess	Opacity	8.25 B
Data O	pacity	9 1 00
Brush	Size strengt	1
Classi	fiet .	
Classif	for Type CenterWeb	(deale)
	Create Classifier	Save Classifier
	Class	after State
Classe	-	
Select	of Classe Ship	
		C harment
8	Picturg	Color
33	E la	
	an should	Color
2	Sain	Color
Trainit	ng Dote	
Select	ed broge: 0	
	Add Training I	mage From Camera
	5	Inset
(t. ins	aget FL orRecognize	TestData/skingkts/skin1.app
1.00	aget FL orflectophics	eriTestData/sampics/skin2.jpg
2.80	aget FL orRecognics	en Crekerskingscareking i pg
3 10	apitFL orRecognics	er/TestDataiskinpics/skin4.jpg
4. 80	agel #1 orflect gains	erTestDiata/skiepics/skie5.pg
ALC: NOT	and the survey of the	and Brokkin-Staniskinghold inco

Intelligent user interfaces

- draw on artificial intelligence and machine learning
- Challenges
 - Training
 - Development
 - Applications
 - User control

Goal: fashion powerful, easy-to-use interactive systems that

IUI applications

Recall: programming with screenshots [Yeh, Chang, and Miller, UIST '09]

 Template search in desktop scripting

Take screenshot Insert image	Create Regi
Find	
find([m])	
findAll([m])	
wait([m])	
<pre>waitVanish([*])</pre>	
exists([M])	
Mouse Actions	8
click([m])	
doubleClick([m])	

nd

Learning to classify in-home events

Automatically generating interfaces [Gajos and Weld, IUI '04]

- Reactive design: remaps to output affordances
- Minimize a cost function derived from navigating between widgets in user traces

200000	Classroom			AV Controls	ointer	Classroom Light Bank	A/V Controls	Tou
	Left Light	Center Light Level	Right Light Level	Projector Projector	• Off	Left Light Level	Projector Power: On	Off
				Input Computer 1 Computer 2	OLow	Off Center Light Level On << 7 >	Computer 2	Lov
				◯ Video✓ Screen	O Med	Off Right Light Level	Video	Med
1111111					O High	On << 7 >	>	Hig

utput affordances ved from navigating between

Ability-based in [Gajos et al., CHI '08]

- Rather than adjust to the device, adjust to the person
- Motor tests measure abilities of disabled individuals
- 25% faster, 73% fewer errors with automatic
 SUPPLE adjustment

int rinter	Name Canon Photo Status: Idle Type: Ink jet Where: Printer roo		De	Frint to File Manual Duplex	(a)	
age range All Current Page Pages Yint Content Print what Document		Zoom Print	umber of copies	1 		
Print All pages i	Print Printer Name Canon Photo Epson Stylus		Limi	ted m	otor dexte	r
	HP Deskjet Lexmark Inkjet Xerox Phaser			Where: Printer ro	om	
	Page range	Copies	Print Con	tent	Zoom	
		Number of copies	Print what		Print what	
		1	Document	t	1 page	
	All	2	Document	t properties	2 pages	
		3	Document	t showing markup	4 pages	
		4	List of ma	urkup	6 pages	
		E	Styles			
		5	Styles		8 pages	

Accelerating information extraction [Hoffmann et al., CHI '09]

I. Automatically extract structure from text 2. Ask web site users to verify or correct

Jerome "Jerry" Seinfeld (born on April 29, 1954 in Brooklyn, New York) is a Golden 😽 and Emmy A winning American commender actor and writer <u>~i</u>bed observatid Is this correct for playing a Jerry Seinfeld? birth_date long-runn fe birth_place 1998), wł Brooklyn, New York Ŵ the show tr Yes I No produced В. Benson," in me min Dee wowe, ms first major

	-	

Completing sketched input [Chen et al., SIGGRAPH Asia '09]

12

Completing sketched input [Chen et al., SIGGRAPH Asia '09]

User drawn sketch

13

Developing intelligent software

Development challenges with ML [Patel et al., CHI '08]

- Software development benefits from modularity, but machine learning is iterative and nonlinear
- Difficulty understanding the statistical process underlying machine learning algorithms
- Evaluation of progress is difficult

15

Papier-Mâché: toolkit support for tangible input [Klemmer et al., CHI '04]

 Monitoring window, wizardof-oz input, listeners, designed and evaluated as a user interface

4							_	_			
1	to	r.	(V	ic	16	30	Ç	28	n	r
H.	AJ	1	1	21	C 1	ci	fii	er			
1	N	0	:1	a	S	si	fi	er	<u> </u>	_	
1	N	C	:	a	S	si	fi	er			
1	1	2	7	a:	5	si	fi	er		5	
1	1	2	777	a:	S	Si i	ze	er [3	3	5	
	1	22	777	a:];];	5	Si Si Si	ze	er [3	33	5,]
	1	22	777	a:];];	8	si Si:	fi i ze ze	er (3	3	5]
	11	2222	777	a:];];	5	S i 2 i 2 i 2 i 2 i 2 i 2 i 2 i 2 i 2 i 2 i	rii ze ze	er [3 [3	3	5) 6) 0)]
	1 1 1	2222	7778	a:];];];	9999	51 312 312 312	ze ze ze	er [3 [3 [3	33	5) 6) 0)]
	N 1 1 1 1	22222	77787	a:];];];	000000	51 312 312 312 312	ze ze ze ze	er [3 [3 [3 [3	3333	5) 6) 2) 3)	
	11113	2222	777872	a:];];];];	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		ze ze ze ze ze	er [3 [3 [3 [3 [3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	5 6 2 3	
67	1 1 1 3 5	2222	7778721	a:];];];];];];	S S S S S S S S S S S S S S S S S S S		ze ze ze ze ze s	(3) (3) (3) (3) (3) (3) (3) (3) (3) (3)	33 33 33 33 33 33 33 33 33 33 33 33 33	5 6 2 3 4 3	
6779	11113	2222	77787212	a:]:]:]:]: 3 0 4	9999 999 80 71			[3 [3 [3 [3 [3 [3 [3 [3 [3]	33 33 33 33 33 33 33 33 33 33 33 33 33	5 6 2 3 4 3 7	
6 795	11135	2222	77 7872128	a:]:]:]: 3 0 4 9	9999 9999 1: 1:			[3 [3 [3 [3 [3 [3 [3 [3 [3 [3]]]]]]]]]]	33 33 33 33 33 33 33 33 33 33 33 33 33	5 6 0 2 3 4 3 7 3	

DE support for ML development [Patel et al., UIST '10]

 Explicit support for each step: feature extraction, model generation, training and testing

Sele	cted Object Vie	Tabl	le View Ch	art View				
Class	RowNumber	Number	Millseconds	Name	Subject	AppName	AppVer	TimeOf
arrow	0	1	547	arrow01	1	Gestures	3.5.0.0	5:05:00
arrow	1	2	557	arrow02	1	Gestures	3.5.0.0	5:05:01

Play-along learning [Fiebrink, Cook, and Trueman, ICMC '09]

• Create the output (sounds) you desire • "Play along" and demonstrate the input that should generate that output

18

Software agents

• Delegate to proactive software and artificial intelligence

Pattie Maes, MIT Media Lab

Direct manipulation

Users should always have full control

Ben Shneiderman, U. Maryland

20

Mixed-initiative interaction Software proposes, user decides Removes the risk that the system may be incorrect, reduces

- user effort

Mixed initiative human-computer interaction

human-computer interaction human-computer interaction degree human-computer interaction journal human-com**puter**

Multimodal interaction

Using simultaneous inputs Sensor fusion can help disambiguate multiple noisy signals

Speech N-best	Gesture N-best	Multimodal N-best
Zoom in	Checkmark	Zoom out
Show info		
Show all		
Zoom out		

Put That There

User modeling

Software that knows you User modeling attempts to build a predictive model of the

- user's state or knowledge
 - State: is the user interruptible
 - Knowledge: would the user kr already?
- Challenges
 - Where does it get this information
 - What if it's wrong?

se this tool in Photoshop

U research: next steps

- Opportunities

 - cannot envision
- Challenges
 - System behavior can be unpredictable
 - Difficult to build user trust

• IUI research can drive new insights in machine learning research Machine learning skills may enable interactive systems that others

