Research Methods

MICHAEL BERNSTEIN CS 376

Goal Understand and use statistical techniques common to HCI research

Last time

- How to plan an evaluation
- What is a statistical test?
- Chi-square
- t-test
- Paired t-test
- Mann-Whitney U

Today

- ANOVA
- Posthoc tests
- Two-way ANOVA
- Repeated measures ANOVA

t-test: compare two means "Do people fix more bugs with our IDE bug suggestion

 "Do people fix more bugs w callouts?"

ANOVA: compare N means • "Do people fix more bugs with our IDE bug suggestion callouts, with warnings, or with nothing?"

Cel means mode

- Assume there are r factor levels e.g., laptop + tablet + phone: r=3
- Value of the jth observation for the ith factor level:

• e.g., $Y_{2,5}$ is the i=2nd condition and the j=5th user

Cel means mode

mean of the factor level

ANOVA characterizes each observation as a deviation from the

Cel means mode • Starter ANOVA model: $Y_{ij} = \mu_i + \epsilon_{ij}$ mean for error: difference between

• Y_{ij} are independent $N(\mu_i,\sigma^2)$

factor level i observed value and the mean

10

Partitioning the variance

• The total variability in Y is the difference between each observation Y_{ij} and the grand mean Y_{ij}

 Easier to understand if we separate it out via the factor level means

$$Y_{ij} - \bar{Y}_{..} = \bar{Y}_{i}.$$

total deviation from grand mean

deviation of factor mean from grand mean

bar is the mean; dot is an aggregate over all observations, here both i and j

 $-Y_{..}+Y_{ij}-Y_{i}$

deviation of response from factor mean

total deviation from grand mean

deviation of factor mean from grand mean

deviation of response from factor mean

12

Partitioning the variance Total sum of squares SSTO: $SSTO = \sum \left[(Y_{ij} - \bar{Y}_{..})^2 \right]$ \dot{i} \dot{j} Treatment sum of squares SSTR: $SSTR = \sum n_i (\bar{Y}_i. - \bar{Y}_{..})^2$ • Error sum of squares SSE: $SSE = \sum (Y_{ij} - \bar{Y}_{i.})^2$ i i

13

ANalysis Of VAriance (ANOVA)

 Provably true: SSTO = SSTR + SSE

total variance

differences

between factor level

means

SSTO: n - I SSTR:r-I SSE: n - r

random variation around factor level means

Degrees of freedom: how many values can vary? (Using n and r)

14

Studentizing the variance

- random variable:
 - Treatment mean square is χ^2 (r-1) $MSTR = \frac{SSTR}{r-1}$
 - Error mean square is χ^2 (n-r) $MSE = \frac{SSE}{n-r}$

- Divide each estimator by its degrees of freedom to produce a χ^2

Turning variance into a statistic

- Null hypothesis: $\mu_1 = \mu_2 = \ldots = \mu_r$
- Alternate hypothesis: not all μ_i are equal
- Statistics magic: dividing two random variables distributed as χ^2 produces a random variable distributed as F

$$\cdot F^* = \frac{MSTR}{MSE}$$
 is

Large MSTR relative to MSE suggests that the factor means explain most variance

$$F(r-1,n-r)$$

16

Finally: run the test!

- Test if
 - $F^* > F(1 \alpha; r 1, n)$ > aov <- aov(value ~ group, data)</pre>
 - > summary(aov)
 - SSIR SSE
- Df Sum Sq Mean Sq F value Pr(>F) 2 22.75 11.38 12.1 0.00032 *** group Residuals 21 19.75 0.94

SS 3 factor levels 24 observations

How large is the value we constructed from the F distribution?

$$p - r)$$

MS F(2,21) p < .001

Posthoc tests

We're done...or are we?

- Significant means "One of the μ_i are different."
- That's not very helpful: "There is some difference between populating the Facebook news feed with friends vs. strangers vs. only Michael's status updates"

Estimating pairwise differences • Which pairs of factor levels are different from each other? 90.0 67.5 Mean likes 45.0 22.5 0.0

Friend feed

Stranger feed

Michael feed

Roughly: we do pairwise t-tests

Friend feed

Stranger feed

Michael feed

But...familywise error! • $\alpha = .05$ implies a .95 probability of being correct • If we do m tests, the actual probability of being correct is now: $\alpha^m = .95 \cdot .95 \cdot .95 \cdot ...$

< .95

Bonferroni correction

- Avoid familywise error by adjusting lpha to be more conservative • Divide α by the number of comparisons you make • 4 tests at $\alpha = .05$ implies using $\alpha = .0125$
- Conservative but accurate method of compensating for multiple tests

Bonferroni correction

> pairwise.t.test(value, group, p.adj='bonferroni')

Pairwise comparisons using t tests with pooled SD

data: value and group

Α B B 0.02971 -C 0.00023 0.15530

P value adjustment method: bonferroni

Reporting an ANOVA

news feed source on number of likes (F(2, 21)=12.1, p<.001)."

> uov <- u	ov(va	alue ~ g	group, da	ıta)		
> summary(aov)					
	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
group	2	22.75	11.38	12.1	0.00032	*:
Residuals	21	19.75	0.94			

correction revealed that friend feed and Michael feed were significantly better than a stranger feed (p<.05), but the two were not significantly different from each other (p=.32)."

"A one-way ANOVA revealed a significant difference in the effect of

**

Crossed study designs

- total likes on Facebook:
 - Strong ties vs. weak ties in your news feed
 - (e.g., "You last liked a story from John Hennessy in January")
- This is a 2 x 2 study: two factor levels for each factor {tie strength, reminder}

Suppose you wanted to measure the impact of two factors on

Presence of a reminder of the last time you liked each friend's content

Basic two-factor ANOVA model $\mu_{ij} = \mu_{..} + \alpha_i + \beta_j$ mean for ith level of grand mean difference between

Ist factor & jth level of 2nd factor

difference between ith level of 1 st factor and grand mean

difference between jth level of 2nd factor and grand mean

$\mu_{ij} = \mu_{..} + \alpha_i + \beta_j$

- Example: $\mu_{1,2}$
 - Mean user has 8 likes: $\mu .. = 8$
 - Mean user with strong ties (i=1) has 11 likes: $\alpha_1 = \mu_i. - \mu.. = 11 - 8 = 3$
 - Mean user with reminder has 7 likes: $\beta_2 = \mu_{.j} - \mu_{..} = 7 - 8 = -1$

Interaction effects

- Sometimes the basic model of between factors
 - Data: People who see strong tie active
 - Result: Grand mean 8, strong tie in this cell is 20

Sometimes the basic model doesn't capture subtle interactions

Data: People who see strong ties and have a reminder are especially

• Result: Grand mean 8, strong tie mean 11, reminder mean 7, but mean

Two-factor ANOVA test

Test for main effects and interaction

> anova(lm(time ~ device * technique)) Analysis of Variance Table

Response: time

Df	Sum Sq	Mean Sq	F
1	981.0	981.02	9
2	3423.8	1711.90	16
2	75.3	37.65	
42	435.9	10.38	
	Df 1 2 2 42	Df Sum Sq 1 981.0 2 3423.8 2 75.3 42 435.9	<pre>Df Sum Sq Mean Sq 1 981.0 981.02 2 3423.8 1711.90 2 75.3 37.65 42 435.9 10.38</pre>

factor or interaction SS MS

Main effects are significant, but interaction effect is also significant

F

Pr(>F) value 4.5291 2.581e-12 *** 4.9547 < 2.2e - 16 ***3.6275 0.03522 *

P

Repeated measures

Within-subjects studies

- Control for individual variation each participant
- Before: we found the mean effect of each treatment
- Now: we find the mean effect of each participant

Control for individual variation using the mean response for

ffect of each treatment t of each participant

Repeated measures in R

repeated measures error term

effect of subtracting out the participant means

remaining main effects

- > summary(aov)

Error: factor(participant) Residuals 7 5.167 0.7381

```
> aov <- aov(value ~ factor(group) +</pre>
+ Error(factor(participant)/factor(group)), repeatframe)
```

```
Df Sum Sq Mean Sq F value Pr(>F)
```

```
Error: factor(participant):factor(group)
            Df Sum Sq Mean Sq F value Pr(>F)
factor(group) 2 22.75 11.375 10.92 0.00139 **
Residuals 14 14.58 1.042
```


All together now

Always follow every step!

- I. Visualize the data
- 2. Compute descriptive statistics (e.g., mean) 3. Remove outliers >2 standard deviations from the mean 4. Check for heteroskedasticity and
- non-normal data
 - Try log, square root, or reciprocal transform
 - ANOVA is robust against non-normal data, but not against heteroskedasticity
- 5. Run statistical test
- 6. Run any posthoc tests if necessary

