Research Methods II

MICHAEL BERNSTEIN
CS 376

Goal

Understand and use statistical techniques common to HCl research

Last time

- How to plan an evaluation
- What is a statistical test?
- Chi-square
- t-test
- Paired t-test
- Mann-Whitney U

Today

- ANOVA
- Posthoc tests
- Two-way ANOVA
- Repeated measures ANOVA

ANOVA

t-test: compare two means

- "Do people fix more bugs with our IDE bug suggestion callouts?"

ANOVA: compare N means

-"Do people fix more bugs with our IDE bug suggestion callouts, with warnings, or with nothing?"

Cell means model

- Assume there are r factor levels e.g., laptop + tablet + phone: $r=3$
- Value of the jth observation for the ith factor level:
$Y_{i j}$
- e.g., $Y_{2,5}$ is the $i=2 n d$ condition and the $j=5$ th user

Cell means model

- ANOVA characterizes each observation as a deviation from the mean of the factor level

Cell means model

- Starter ANOVA model:

$$
\begin{aligned}
& Y_{i j}=\mu_{i}+\epsilon_{i j} \\
& \text { mean for } \\
& \text { factor level i } \\
& \text { error: difference between } \\
& \text { observed value and the mean }
\end{aligned}
$$

- Y_{ij} are independent $N\left(\mu_{i}, \sigma^{2}\right)$

Partitioning the variance

- The total variability in Y is the difference between each observation Y_{ij} and the grand mean $\bar{Y}_{\text {.. }}$.
bar is the mean; dot is an aggregate over all observations, here both i and j
- Easier to understand if we separate it out via the factor level means

total deviation from grand mean
deviation of factor mean
from grand mean
deviation of response from factor mean

$$
\begin{aligned}
& \text { total deviation } \\
& \begin{array}{l}
\text { deviation of factor mean } \\
\text { from grand mean }
\end{array} \\
&
\end{aligned}
$$

Partitioning the variance

- Total sum of squares SSTO:

$$
S S T O=\sum_{i} \sum_{j}\left(Y_{i j}-\bar{Y}_{. .}\right)^{2}
$$

Treatment sum of squares SSTR:

$$
S S T R=\sum_{i} n_{i}\left(\bar{Y}_{i .}-\bar{Y}_{. .}\right)^{2}
$$

- Error sum of squares SSE:

$$
S S E=\sum_{i} \sum_{j}\left(Y_{i j}-\bar{Y}_{i \cdot}\right)^{2}
$$

ANalysis Of VAriance (ANOVA)

- Provably true:

```
SSTO = SSTR + SSE
total variance
``` between
factor level
means
- Degrees of freedom: how many values can vary? (Using \(n\) and \(r\)) SSTO: n - I SSTR: \(r\) - I SSE: \(n-r\)

\section*{Studentizing the variance}
- Divide each estimator by its degrees of freedom to produce a \(\chi^{2}\) random variable:
- Treatment mean square is \(\chi^{2}(r-1)\)
\[
M S T R=\frac{S S T R}{r-1}
\]
- Error mean square is \(\chi^{2}(n-r)\)
\[
M S E=\frac{S S E}{n-r}
\]

\section*{Turning variance into a statistic}
- Null hypothesis: \(\mu_{1}=\mu_{2}=\ldots=\mu_{r}\)
- Alternate hypothesis: not all \(\mu_{i}\) are equal
- Statistics magic: dividing two random variables distributed as \(\chi^{2}\) produces a random variable distributed as F
- \(F^{*}=\frac{M S T R}{M S E} \quad\) is \(\quad F(r-1, n-r)\)

Large MSTR relative to MSE suggests that the factor means explain most variance

\section*{Finally: run the test!}
- How large is the value we constructed from the F distribution?
- Test if

\section*{Posthoc tests}

\section*{We're done...or are we?}
- Significant means "One of the \(\mu_{i}\) are different."
- That's not very helpful:"There is some difference between populating the Facebook news feed with friends vs. strangers vs. only Michael's status updates"

\section*{Estimating pairwise differences}
- Which pairs of factor levels are different from each other?

\section*{Roughly: we do pairwise t-tests}

\section*{But...familywise error!}
- \(\alpha=.05\) implies a .95 probability of being correct
- If we do \(m\) tests, the actual probability of being correct is now: \(\alpha^{m}=.95 \cdot .95 \cdot .95 \cdot \ldots\)
\(<.95\)

\section*{Bonferroni correction}
- Avoid familywise error by adjusting \(\alpha\) to be more conservative
- Divide \(\alpha\) by the number of comparisons you make
. 4 tests at \(\alpha=.05\) implies using \(\alpha=.0125\)
- Conservative but accurate method of compensating for multiple tests

\section*{Bonferroni correction}
> pairwise.t.test(value, group, p.adj='bonferroni')
Pairwise comparisons using t tests with pooled SD
data: value and group

A B
B 0.02971 -
C 0.000230 .15530

P value adjustment method: bonferroni

\section*{Reporting an ANOVA}
- "A one-way ANOVA revealed a significant difference in the effect of news feed source on number of likes \((F(2,2 I)=\mid 2 . I, p<.00 I)\)."
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{> aov <- aov(value \(\sim\) group, data)
> summary(aov)} \\
\hline & Df & Sum Sa & Mean Sq & F value & \(\operatorname{Pr}(>\mathrm{F})\) \\
\hline group & 2 & 22.75 & 11.38 & 12.1 & 0.00032 \\
\hline Residuals & 21 & 19.75 & 0.94 & & \\
\hline
\end{tabular}
- "Posthoc tests using Bonferroni correction revealed that friend feed and Michael feed were significantly better than a stranger feed (\(p<.05\)), but the two were not significantly different from each other (\(\mathrm{p}=.32\))."

\title{
Two-way ANOVA
}

\section*{Crossed study designs}
- Suppose you wanted to measure the impact of two factors on total likes on Facebook:
- Strong ties vs. weak ties in your news feed
- Presence of a reminder of the last time you liked each friend's content (e.g., "You last liked a story from John Hennessy in January")
- This is a \(2 \times 2\) study: two factor levels for each factor \{tie strength, reminder\}

\section*{Basic two-factor ANOVA model}

\[
\mu_{i j}=\mu_{. .}+\alpha_{i}+\beta_{j}
\]
- Example: \(\mu_{1,2}\)
- Mean user has 8 likes: \(\mu . .=8\)
- Mean user with strong ties \((\mathrm{i}=\mathrm{I})\) has I I likes:
\[
\alpha_{1}=\mu_{i} .-\mu_{. .}=11-8=3
\]
- Mean user with reminder has 7 likes:
\[
\beta_{2}=\mu_{\cdot j}-\mu . .=7-8=-1
\]

\section*{Interaction effects}
- Sometimes the basic model doesn't capture subtle interactions between factors
- Data: People who see strong ties and have a reminder are especially active
- Result: Grand mean 8, strong tie mean II, reminder mean 7, but mean in this cell is 20

\section*{Two-factor ANOVA test}
- Test for main effects and interaction
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{> anova(lm(time \(\sim\) device \({ }^{*}\) technique))
Analysis of Variance Table}} \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{Response: time} \\
\hline & & Sum Sq & Mean Sq & F value & Pr(>F) & \\
\hline device & 1 & 981.0 & 981.02 & 94.5291 & 2.581e-12 & \\
\hline technique & 2 & 3423.8 & 1711.90 & 164.9547 & < \(2.2 \mathrm{e}-16\) & *** \\
\hline device:technique & 2 & 75.3 & 37.65 & 3.6275 & 0.03522 & \\
\hline Residuals & 42 & 435.9 & 10.38 & & & \\
\hline \multicolumn{7}{|l|}{factor or interaction SS MS F P} \\
\hline
\end{tabular}
- Main effects are significant, but interaction effect is also significant

\section*{Repeated measures ANOVA}

\section*{Within-subjects studies}
- Control for individual variation using the mean response for each participant
- Before: we found the mean effect of each treatment
- Now: we find the mean effect of each participant

\section*{Repeated measures in \(\mathbf{R}\)}
repeated measures error term
effect of subtracting out the participant means
remaining main effects

\section*{All together now}

\section*{Always follow every step!}
I. Visualize the data
2. Compute descriptive statistics (e.g., mean)
3. Remove outliers >2 standard deviations from the mean
4. Check for heteroskedasticity and non-normal data
- Try log, square root, or reciprocal transform
- ANOVA is robust against non-normal data, but not against heteroskedasticity
5. Run statistical test
6. Run any posthoc tests if necessary```

