Usability Testing

Why do Usability Testing?
- Can’t tell how good UI is until? – people use it!
- Expert review methods are based on evaluators who? – may know too much – may not know enough (about tasks, etc.)
- Hard to predict what real users will do

Choosing Participants
- Representative of target users? – job-specific vocab / knowledge – tasks
- Approximate if needed – system intended for doctors? • get medical students or nurses – system intended for engineers? • get engineering students
- Use incentives to get participants – T-shirt, mug, free coffee/pizza

Ethical Considerations
- Usability tests can be distressing – users have left in tears
- Testing/fieldwork can be coercive if there is a power imbalance (e.g., in under resourced communities)

Ethical Considerations
- Usability tests can be distressing – users have left in tears
- Testing/fieldwork can be coercive if there is a power imbalance (e.g., in under resourced communities)
Ethical Considerations

• Usability tests can be distressing
 – users have left in tears
• Testing/fieldwork can be coercive if there is a power imbalance (e.g., in under resourced communities)

“When the interviewer is a foreign researcher requiring a translator, the bias towards the interviewer’s artifact increases to 5x.”

November 13, 2017

Usability Test Proposal

• A report that contains
 – objective
 – description of system being testing
 – task environment & materials
 – participants
 – methodology
 – tasks
 – test measures
• Get approved & then reuse for final report
• Seems tedious, but writing this will help “debug” your test

Selecting Tasks

• Tasks from low-fi design can be used
 – may need to shorten if
 • they take too long
 • require background that test user won’t have
• Don’t train unless that will occur in real deployment
• Avoid bending tasks in direction of what your design best supports
• Don’t choose tasks that are too fragmented
 – fragmented = do not represent a complete goal someone would try to accomplish with your application
 – e.g., phone-in bank test

Two Types of Data to Collect

• Process data
 – observations of what users are doing & thinking
 – qualitative
• Bottom-line data
 – summary of what happened
 • time, errors, success
 – i.e., the dependent variables
 – quantitative

Which Type of Data to Collect?

• Focus on process data first
 – gives good overview of where problems are

“It’s hard to see things when you’re too close. Take a step back and look.”
— Bob Ross

http://www.redicecreations.com/ul_img/24592nazca_bird.jpg
Which Type of Data to Collect?

- Focus on process data first
 - gives good overview of where problems are
- Bottom-line doesn’t tell you?
 - where to fix
 - just says: “too slow”, “too many errors”, etc.
- Hard to get reliable bottom-line results
 - need many users for statistical significance

The “Thinking Aloud” Method

- Need to know what users are thinking, not just what they are doing
- Ask users to talk while performing tasks
 - tell us what they are thinking
 - tell us what they are trying to do
 - tell us questions that arise as they work
 - tell us things they read

Thinking Aloud (cont.)

- Prompt the user to keep talking
 - “tell me what you are thinking”
- Only help on things you have pre-decided
 - keep track of anything you do give help on
- Make a recording and take good notes
 - make sure you can tell what they were doing
 - use a digital watch/clock
 - record audio & video
 - or even event logs

Will thinking out loud give the right answers?

- Not always
 - If you ask, people will always give an answer, even if it is has nothing to do with facts
 - panty hose example
 - Try to avoid specific questions (especially that have binary answers)

Using the Test Results

- Summarize the data
 - make a list of all critical incidents (CI)
 - positive & negative
 - include references back to original data
 - try to judge why each difficulty occurred
- What does data tell you?
 - UI work the way you thought it would?
 - users take approaches you expected?
 - something missing?
Using the Results (cont.)

- Update tasks & rethink design
 - rate severity & ease of fixing CIs
 - fix both severe problems & make the easy fixes

Measuring Bottom-Line Usability

- Situations in which numbers are useful
 - time requirements for task completion
 - successful task completion %
 - compare two designs on speed or # of errors

- Ease of measurement
 - time is easy to record
 - error or successful completion is harder
 - define in advance what these mean

- Do not combine with thinking-aloud. Why?
 - talking can affect speed & accuracy

Analyzing the Numbers

- Example: trying to get task time ≤ 30 min.
 - test gives: 20, 15, 40, 90, 10, 5
 - mean (average) = 30
 - median (middle) = 17.5
 - looks good!

- Did we achieve our goal?

- Wrong answer, not certain of anything!

- Factors contributing to our uncertainty?
 - small number of test users (n = 6)
 - results are very variable (standard deviation = 32)
 - std. dev. measures dispersal from the mean

Analyzing the Numbers (cont.)

- This is what statistics is for

- Crank through the procedures and you find
 - 95% certain that typical value is between 5 & 55

Analyzing the Numbers (cont.)

<table>
<thead>
<tr>
<th>Participant</th>
<th>Time (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

- number of participants = 6
- mean = 30.0
- median = 17.5
- std dev = 31.8

- standard error of the mean = stddev / sqrt (#samples) = 13.0

- typical values will be mean ± 2*standard error = 4 to 56!

- what is plausible? = confidence (alpha=5%), stddev, sample size
 = 25.4 = 95% confident between 4.6 & 55.4

Analyzing the Numbers (cont.)

- This is what statistics is for

- Crank through the procedures and you find
 - 95% certain that typical value is between 5 & 55

- Usability test data is highly variable
 - need lots to get good estimates of typical values
 - 4x as many tests will only narrow range by 2x
 - breadth of range depends on sqrt of # of test users
 - this is when online methods become useful
 - easy to test w/ large numbers of users

Web Usability Test Results
Measuring User Preference

- How much users like or dislike the system
 - can ask them to rate on a scale of 1 to 10
 - or have them choose among statements
 - “best UI I’ve ever…”, “better than average”...
 - hard to be sure what data will mean
 - novelty of UI, feelings, not realistic setting …
- If many give you low ratings → trouble
- Can get some useful data by asking
 - what they liked, disliked, where they had trouble,
 best part, worst part, etc.
 - redundant questions are OK

Comparing Two Alternatives

- Between groups experiment
 - two groups of test users
 - each group uses only 1 of the systems
- Within groups experiment
 - one group of test users
 - each person uses both systems
 - can’t use the same tasks or order (learning)
 - best for low-level interaction techniques
 - e.g., new mouse, new swipe interaction ...

Experimental Details

- Order of tasks
 - choose one simple order (simple → complex)
 - unless doing within groups → counterbalance order
- Training
 - depends on how real system will be used
- Online companies can do large AB tests
 - look at resulting behavior (e.g., buy?)

Instructions to Participants

- Describe the purpose of the evaluation
 - “I’m testing the product; I’m not testing you”
- Tell them they can quit at any time
- Demonstrate the equipment
- Explain how to think aloud
- Explain that you will not provide help
- Describe the task
 - give written instructions
 - one task at a time
- Keeping variability down
 - recruit test users with similar background
 - brief users to bring them to common level
 - perform the test the same way every time
 - don’t help some more than others (plan in advance)
 - make instructions clear
- Debriefing test users
 - often don’t remember, so demonstrate or show video segments
 - ask for comments on specific features
 - show them screen (online or on paper)
Reporting the Results

- Report what you did & what happened
- Images & graphs help people get it!
- Video clips can be quite convincing

Heuristic Evaluation vs. User Testing

- HE is much faster
 - 1-2 hours each evaluator vs. days-weeks
- HE doesn't require interpreting user’s actions
- User testing is far more accurate (by def.)
 - takes into account actual users and tasks
 - HE may miss problems & find “false positives”
- Good to alternate between HE & user testing
 - find different problems
 - don’t waste participants

Summary

- User testing is important, but takes time/effort
- Use ????? tasks & ????? participants
 - real tasks & representative participants
- Be ethical & treat your participants well
- Want to know what people are doing & why? collect
 - process data
- Bottom line data requires ???? to get statistically reliable results
 - more participants
- Difference between between & within groups?
 - between groups: everyone participates in one condition
 - within groups: everyone participates in multiple conditions

Further Reading on Ethical Issues With Community-based Research

- “Imperialist Tendencies” blog post by Jan Chipchase, http://janchipchase.com/content/essays/imperialist-tendencies/
- “To Hell with Good Intentions” by Ivan Illich, speech to the Conference on InterAmerican Student Projects (CASIP), April 20, 1968, http://www.swaraj.org/illich_hell.htm

Next Time

- Lecture
 - Midterm ("closed-book")
- Studio
 - Hi-fi prototype planning session