Human Abilities: Vision & Cognition

Prof. James A. Landay
Computer Science Department
Stanford University
Autumn 2017
November 6, 2017

Hall of Fame or Shame?

Hall of Fame!

Hall of Shame!

Hall of Fame or Shame?

Human Abilities: Vision & Cognition

Prof. James A. Landay
Computer Science Department
Stanford University
Autumn 2017
November 6, 2017

Hall of Fame or Shame?

Hall of Fame!

Hall of Shame!

Hall of Fame or Shame?
Why Study Color?

1) Color can be a powerful tool to improve user interfaces by communicating key information.

2) Inappropriate use of color can severely reduce the performance of systems we build.

Visible Spectrum

- Rods: primarily for night vision & perceiving movement, sensitive to broad spectrum of light, can't discriminate between colors, sense intensity or shades of gray.
- Cones: used to sense color.

Human Visual System

- Light passes through lens
- Focused on retina

Retina

- Retina covered with two types of light-sensitive receptors called:
 - Rods
 - Cones
Retina

Center of retina has most of the cones →
- allows for high acuity of objects focused at center

Edge of retina is dominated by rods →
- allows detecting motion of threats in periphery

Color Perception via Cones

- “Photopigments” used to sense color
- 3 types: blue, green, “red” (really yellow)
 - each sensitive to different band of spectrum
 - ratio of neural activity of the 3 → color
 - other colors are perceived by combining stimulation

Color Sensitivity

- Not distributed evenly – mainly reds (64%) & very few blues (4%) →
 - insensitivity to short wavelengths (blue)

- Few blue cones in retina center (high acuity) →
 - “disappearance” of small blue objects you fixate on

- As we age lens yellows & absorbs shorter wavelengths →
 - sensitivity to blue is even more reduced

- Implication
 - don’t rely on blue for text or small objects!

Distribution of Photopigments

Focus

- Different wavelengths of light focused at different distances behind eye’s lens
 - need for constant refocusing → ?
 - causes fatigue
 - be careful about color combinations
Focus

- Different wavelengths of light focused at different distances behind eye’s lens
 - need for constant refocusing → fatigue
- Pure (saturated) colors require more focusing than less pure (desaturated)
 - don’t use saturated colors in UIs unless you really need something to stand out

Color Deficiency (Also known as “color blindness”)

- Trouble discriminating colors
 - besets about 9% of population
- Two main types
 - different photopigment response most common
 - reduces capability to discern small color diffs
 - red-green deficiency is best known
 - lack of either green or red photopigment → can’t discriminate colors dependent on R & G

Color Guidelines

Avoid simultaneous display of highly saturated, spectrally extreme colors
 - e.g., no cyans/blues at the same time as reds, why?
 - refocusing
 - desaturated combinations are better → pastels

Use the Hue Circle

- Pick non-adjacent colors
 - opponent colors go well together
 - (red & green) or (yellow & blue)

Color Guidelines (cont.)

Avoid pure blue for text, lines & small shapes
 - also avoid adjacent colors that differ only in blue
 - blue makes a great background color

Color Guidelines (cont.)

- Size of detectable changes in color varies
 - hard to detect changes in reds, purples, & greens
 - easier to detect changes in yellows & blue-greens
 - older users need higher brightness levels
- Hard to focus on edges created by only color
 - use both brightness & color differences
- Avoid single-color distinctions
 - mixtures of colors should differ in 2 or 3 colors
 - helps color-deficient observers
Team Break

Administrivia

- Quiz 2 grades
 - Average: 3.25 / 4
 - Median: 3 / 4
 - Std. Dev.: .5
 - Range 2-4

- Have your Heuristic Evaluation ready to go when you arrive in studio Thur/Fri

The Model Human Processor

- Developed by Card, Moran & Newell ('83)
 - based on empirical data

MHP Basics

- Sometimes serial, sometimes parallel
 - serial in action & parallel in recognition
 - pressing key in response to light (serial)
 - driving, reading signs & hearing at once (parallel)

- Parameters
 - processors have cycle time (T) = 100 ms
 - memories have capacity, decay time & type
What is missing from MHP?

- Haptic memory – for touch
- Moving from sensory memory to WM – attention filters stimuli & passes to WM
- Moving from WM to LTM – elaboration

Memory

- Working memory (short term)
 - small capacity (7 ± 2 “chunks”)
 - 6174591765 vs. (617) 459-1765
 - NBCIBMGM vs. NBC IBM GMC
 - rapid access (~70ms) & decay (~200ms)
 - pass to LTM after a few seconds of continued storage
- Long-term memory
 - huge (if not “unlimited”)
 - slower access time (~100ms) w/ little decay

MHP Principles of Operation

- Recognize-Act Cycle of the CP
 - on each cycle contents in WM initiate actions
 - associatively linked to them in LTM
 - actions modify the contents of WM
MHP Principles of Operation

- **Recognize-Act Cycle of the CP**
 - on each cycle contents in WM initiate actions associatively linked to them in LTM
 - actions modify the contents of WM

- **Discrimination Principle**
 - retrieval is determined by candidates that exist in memory relative to retrieval cues
 - interference by strongly activated chunks

Experiment

- **Task:**
 - Quickly tap each target 50 times accurately

- **Conditions:**
 1. Two ½” diameter targets 6” apart
 2. Two ½” diameter targets 24” apart
 3. Two 2” diameter targets 24” apart
 4. Two 2” diameter targets 24” apart (no accuracy required)

- **Turn to neighbor: discuss what will happen**

Experimental Results

- **Task:**
 - Quickly tap each target 50 times accurately

 - 30 sec
 - 48 sec
 - 31 sec
 - 21 sec (lots of spread)

Principles of Operation (cont.)

- **Fitts’ Law**
 - moving hand is a series of microcorrections
 - correction takes $T_p + T_c + T_m = 240 \text{ msec}$
 - time T_{pos} to move the hand to target size S which is distance D away is given by:
 - $T_{pos} = a + b \log_2 \left(\frac{D}{S} + 1 \right)$
 - summary
 - time to move the hand depends only on the **relative precision** required

Fitts’ Law Example

- Which will be faster on average?
 - pie menu (bigger targets & less distance)
Pie Menus in Use Today

- The Sims
- Rainbow 6
- Maya

Apple Watch

Simple Experiment

- Volunteer
- Start saying **colors** you see in list of words
 - when slide comes up
 - as fast as you can
- Say “done” when finished
- Everyone else time it...

Simple Experiment

- Do it again
- Say “done” when finished
Simple Experiment

- Do it again
- Say “done” when finished

Memory

- Interference
 - two strong cues in working memory
 - link to different chunks in long term memory

- Why learn about memory?
 - know what's behind many HCI techniques
 - helps you understand what users will “get”
 - aging population of users

Design UIs for Recognition over Recall

- Recall
 - info reproduced from memory
 - e.g., command name & semantics

- Recognition
 - presentation of info provides knowledge that info has been seen before
 - e.g., command in menu reminds you of semantics
 - easier because of cues to retrieval

 - cue is anything related to item or situation where learned
 - e.g., giving hints, icons, labels, menu names, etc.

Human Abilities Summary

- Color can be helpful, but pay attention to
 - how colors combine
 - limitations of human perception
 - people with color deficiency

- Model Human Processor
 - perceptual, motor, cognitive processors + memory
 - model allows us to make predictions

- Memory
 - three types: sensor, WM & LTM
 - interference can make hard to access LTM
 - cues in WM can make it easier to access LTM

- Key time to remember from MHP: ~100 ms

Cycle time and memory access time

Further Reading

Vision and Cognition

- Books
 - Human-Computer Interaction, by Dix, Finlay, Abowd, and Beale, 1998

- Applying Fitts’ Law to Mobile Interface Design by Justin Smith
Next Time

- Conceptual Models & Interface Metaphors
 - Read "The Psychology of Everyday Things" (Ch. 1), from The Design of Everyday Things by Donald Norman

- Studio
 - Ad-hoc group heuristic evaluation
 - Must be present to get credit on assignment