Usability Testing

Prof. James A. Landay 刘哲明
Computer Science Department Stanford University
CS 147 Autumn 2016 November 15, 2016

Outline

• Why do usability testing?
• Choosing participants
• Ethical considerations
• Designing & conducting the test
• Using the results
• Experimental options & details

Why do Usability Testing?

• Can’t tell how good UI is until?
 – people use it!

• Expert review methods are based on evaluators who?
 – may know too much
 – may not know enough (about tasks, etc.)

• Hard to predict what real users will do

Choosing Participants

• Representative of target users?
 – job-specific vocab / knowledge
 – tasks

• Approximate if needed
 – system intended for doctors?
 • get medical students or nurses
 – system intended for engineers?
 • get engineering students

• Use incentives to get participants
 – T-shirt, mug, free coffee/pizza

Ethical Considerations

• Usability tests can be distressing
 – users have left in tears

• Testing/fieldwork can be coercive if there is a power imbalance (e.g., in under resourced communities)

Ethical Considerations

• Usability tests can be distressing
 – users have left in tears

• Testing/fieldwork can be coercive if there is a power imbalance (e.g., in under resourced communities)

http://www.sunypress.edu/ “the ‘at-risk’ label is highly problematic and often implicitly racist and classist... it locates problems in individuals, families, and communities, rather than in institutional structures that create and maintain inequality.”
Ethical Considerations

- Usability tests can be distressing
 - users have left in tears
- Testing/fieldwork can be coercive if there is a power imbalance (e.g., in under resourced communities)

“When the interviewer is a foreign researcher requiring a translator, the bias towards the interviewer’s artifact increases to 5x.”

You have a responsibility to alleviate these issues
- make voluntary with informed consent (form)
- avoid pressure to participate
- let them know they can stop at any time
- stress that you are testing the system, not them
- make collected data as anonymous as possible

Often must get human subjects approval (IRB)

Usability Test Proposal

- A report that contains
 - objective
 - description of system being testing
 - task environment & materials
 - participants
 - methodology
 - tasks
 - test measures

- Get approved & then reuse for final report
- Seems tedious, but writing this will help “debug” your test

Selecting Tasks

- Tasks from analysis & design can be used
 - may need to shorten if
 - they take too long
 - require background that test user won’t have

- Try not to train unless that will happen in real deployment
- Avoid bending tasks in direction of what your design best supports
- Don’t choose tasks that are too fragmented
 - fragmented = do not represent a complete goal someone would try to accomplish with your application
 - e.g., phone-in bank test

Two Types of Data to Collect

- Process data
 - observations of what users are doing & thinking
 - qualitative

- Bottom-line data
 - summary of what happened
 - time, errors, success
 - i.e., the dependent variables
 - quantitative

Which Type of Data to Collect?

- Focus on process data first
 - gives good overview of where problems are
Which Type of Data to Collect?

- Focus on process data first
 - gives good overview of where problems are
- Bottom-line doesn’t tell you:
 - where to fix
 - just says: “too slow”, “too many errors”, etc.
- Hard to get reliable bottom-line results
 - need many users for statistical significance

The “Thinking Aloud” Method

- Need to know what users are thinking, not just what they are doing
- Ask users to talk while performing tasks
 - tell us what they are thinking
 - tell us what they are trying to do
 - tell us questions that arise as they work
 - tell us things they read

Thinking Aloud (cont.)

- Prompt the user to keep talking
 - “tell me what you are thinking”
- Only help on things you have pre-decided
 - keep track of anything you do give help on
- Make a recording and take good notes
 - make sure you can tell what they were doing
 - use a digital watch/clock
 - record audio & video
 - or even event logs

Will thinking out loud give the right answers?

- Not always
- If you ask, people will always give an answer, even if it is has nothing to do with facts
 - panty hose example

 ➔ Try to avoid specific questions (especially that have binary answers)

Using the Test Results

- Summarize the data
 - make a list of all critical incidents (CI)
 - positive & negative
 - include references back to original data
 - try to judge why each difficulty occurred

- What does data tell you?
 - UI work the way you thought it would?
 - users take approaches you expected?
 - something missing?
Using the Results (cont.)

- Update tasks & rethink design
 - rate severity & ease of fixing CIs
 - fix both severe problems & make the easy fixes

Measuring Bottom-Line Usability

- Situations in which numbers are useful
 - time requirements for task completion
 - successful task completion %
 - compare two designs on speed or # of errors
- Ease of measurement
 - time is easy to record
 - error or successful completion is harder
 - define in advance what these mean
- Do not combine with thinking-aloud. Why?
 - talking can affect speed & accuracy

Analyzing the Numbers

- Example: trying to get task time ≤ 30 min.
 - test gives: 20, 15, 40, 90, 10, 5
 - mean (average) = 30
 - median (middle) = 17.5
 - looks good!
- Did we achieve our goal?
- Wrong answer, not certain of anything!
- Factors contributing to our uncertainty:
 - small number of test users (n = 6)
 - results are very variable (standard deviation = 32)

<table>
<thead>
<tr>
<th>Participant #</th>
<th>Time (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

- std. dev. measures dispersal from the mean

- breadth of range depends on sqrt of # of test users
- this is when online methods become useful
- easy to test with large numbers of users

Analyzing the Numbers (cont.)

- This is what statistics is for
- Crank through the procedures and you find
 - 95% certain that typical value is between 5 & 55

Analyzing the Numbers (cont.)

- Web Usability Test Results

<table>
<thead>
<tr>
<th>Participant #</th>
<th>Time (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

- number of participants: 6
- mean: 30.0
- median: 17.5
- std dev: 31.8
- standard error of the mean = stddev / sqrt (samples) = 13.0
- typical values will be mean ± 2*standard error → 4 to 56

- what is plausible (95% confidence, alpha=5%
 stddev, sample size): 25.4
 → 95% confident between 4.4 & 55.4

- Usability test data is quite variable
 - need lots to get good estimates of typical values
 - 4x as many tests will only narrow range by 2x
 - breadth of range depends on sqrt of # of test users
 - this is when online methods become useful
 - easy to test w/ large numbers of users
Measuring User Preference

- How much users like or dislike the system
 - can ask them to rate on a scale of 1 to 10
 - or have them choose among statements
 - "best UI I've ever...", "better than average" ...
 - hard to be sure what data will mean
 - novelty of UI, feelings, not realistic setting ...
- If many give you low ratings → trouble
- Can get some useful data by asking
 - what they liked, disliked, where they had trouble, best part, worst part, etc.
 - redundant questions are OK

Comparing Two Alternatives

- Between groups experiment
 - two groups of test users
 - each group uses only 1 of the systems

- Within groups experiment
 - one group of test users
 - each person uses both systems
 - can't use the same tasks or order (learning)
 - best for low-level interaction techniques
 - e.g., new mouse, new swipe interaction, ...

Comparing Two Alternatives

- Between groups requires many more participants than within groups
- See if differences are statistically significant
 - assumes normal distribution & same std. dev.
- Online companies can do large A/B tests
 - look at resulting behavior (e.g., buy?)

Instructions to Participants

- Describe the purpose of the evaluation
 - "I'm testing the product; I'm not testing you"
- Tell them they can quit at any time
- Demonstrate the equipment
- Explain how to think aloud
- Explain that you will not provide help
- Describe the task
 - give written instructions
 - one task at a time

Reporting the Results

- Report what you did & what happened
- Images & graphs help people get it!
- Video clips can be quite convincing

HE vs. User Testing

- HE is much faster
 - 1-2 hours each evaluator vs. days-weeks
- HE doesn’t require interpreting user’s actions
- User testing is far more accurate (by def.)
 - takes into account actual users and tasks
 - HE may miss problems & find "false positives"
- Good to alternate between HE & user testing
 - find different problems
 - don’t waste participants
Summary

- User testing is important, but takes time/effort
- Use ??? tasks & ????? participants
 - real tasks & representative participants
- Be ethical & treat your participants well
- Want to know what people are doing & why? collect
 - process data
- Bottom line data requires ??? to get statistically reliable results
 - more participants
- Difference between between & within groups?
 - between groups: everyone participates in one condition
 - within groups: everyone participates in multiple conditions

Further Reading on Ethical Issues With Community-based Research

- “Imperialist Tendencies” blog post by Jan Chipchase, http://janchipchase.com/content/essays/imperialist-tendencies/
- “To Hell with Good Intentions” by Ivan Illich, speech to the Conference on InterAmerican Student Projects (CASP), April 30, 1968, http://www.swaraj.org/illich-hell.htm

Next Time

- Lecture
 - Midterm (“closed-book”)
- Studio
 - Hi-fi prototype planning session