

CS 147 Final Report
Chua Kai Jian

Gloria Chua

Monica Yupa

Peter Farejowicz

  

�1

Muncher
FUSS$LESS,$DINE$MORE

Problem and Solution Overview
When groups of friends go out to eat, finding a place everyone agrees on can be difficult.

Muncher’s mission is to help you decide where to eat in groups, removing the frustration in the
process. With the help of human-based artificial intelligence and a messaging user interface, Muncher

understands your preferences and makes the hard decisions for you. It is like having a genie in your

pocket, so you can fuss less, dine more.

�2

Tasks and Final Interface Scenarios
We chose the following 3 tasks to focus on:

A. Decide on a place to eat (moderate)
In this task, the user along with a group of friends carry out the actions necessary in order to get
the Muncher genie to pick a place to eat. This allows for decisions to be made taking into account

expressed individual preferences.

�3

B. Deal with user discontent (complex)
Since it is likely that there will not be full consensus on a particular decision, groups of friends need
to be able to iron out any disagreements and discontent in the decisions Muncher has made.

C. Coordinate the actual plans (simple)
In this task, the users figure out the logistics relating to any auxiliary action related to eating, such

as making reservations and adding the appointment to one’s calendar. We decided to include this
task to complete the user flow from planning to action. (Storyboard on the next page)

�4

Showing(the(
poll(results(
increases(
transparency(
as(a(means(
to(deal(with(
discontent

Having(a(drag(
&(drop(ranking(
system(allows(
users(who(did(
not(get(their(
top(choices(to(
s9ll(express(
their(opinions

Type your message here

No.

Wonderful! Let’s wait for your

friends to input their preferences

or the poll to expire.

Muncher

Evvia
Mediterranean fine dining
$$$$
1.3 mil
Greek

8 votes

St. Michael’s Alley
New American brunch
$$$
0.8 mil
American

7 votes

Rangoon Ruby
Hearty Burmese cuisine
$$$
0.8 mil
Burmese

5 votes

Excellent! Based on your group’s
preferences, here are the top 3
choices. Click and drag to rank!

CancelSubmit

Sketc
h

9:41
AM

100%

Alpha Eta Brunches
Monica, Peter, Rebecca... (15)

…

Design Evolution
Through user-testing our low-fidelity prototype, we gained many deep insights about our initial

sketches. These were super helpful in guiding our subsequent design evolution through the
medium and high fidelity prototypes, in terms of AI presence, process flow and optionality. Overall,

the interviews helped us realize that Muncher needs to stick to a simple interface flow to avoid

user frustration and decrease time spent deciding where to eat.

A. The idea of a ‘Muncher genie’ was well-received, but not immediately

apparent to users
Users noticed the genie presence in the group chat (L1), but not when they were presented with

the restaurant suggestion (L2). Hence, in our med-fi and hi-fi iterations, we kept and augmented
the AI genie concept, and made the genie speak like a human being, so as to ensure that the genie’s

presence is felt whenever the user is faced with a decision (H1, H2).

B. Users found redundancy in expressing preferences
The app requires users to input their preferences when the group is first started, then the genie
asks for preferences again during the poll (L3, L4). This repetitiveness makes the process laborious

and frustrated users. Hence, we decided to de-prioritize the polling and encourage users to go
straight to deciding a place by moving the “Decide place now” above “Launch new poll” (L3, H3).

We also made an assumption that at the backend, the preferences entered in the “Profile” (H4)

would be automatically imported into the group created, so there is no need to gather information
from users about price, rating, reviews etc. through polling.

L1 L2 H1 H2

� ���

�5

C. When the genie decides on a place for the users, users wanted multiple

options instead of one
We noticed that users had the most trouble with figuring out the prototype flow when they did not
agree with the first restaurant suggestion; they found it a hassle to keep going back to poll or

decide on a new place to eat.

D. Users only had the patience for up to 3 restaurant suggestions.
After 3 different suggestions, most just wanted to finalize a location, as the app started to feel

repetitive. They suggested more restaurant options up-front and less back-and-forth, especially
when they prefer spending more time looking at food pictures and restaurants than inputting

preferences.

Taking C and D into consideration, we introduced “restaurant cards” (H7) that will be curated

based on the automatic collation of all users’ profile preferences (H4) when “Decide place now” is
pressed. Next, instead of just giving one option, the Muncher genie shortlists the top 3

restaurants, and give each user the chance to rank them. This provides an extra layer for making all

voices heard, so that users whose choices did not make the top 3 would still be able to express
their preferences, knowing that the 3 restaurants represent the group’s collective decision.

L3 L4 H3 H4

� ���

�6

Addressing Usability Issues
1) H2-2: In the profile, it is unclear what the ranges are for the values, so the

user could not properly gauge their interests

• Suggested fix: Two indicators on the bar, one for min and one for max

• Status: Fixed. Having two sliding indicators allow users to express a range for each

preference, instead of just a point

L5 L6 L7 L8

� ���

H5 H6 H7 H8

� ���

�7

2) H2-3: Binary options on polls doesn’t allow for user to express opinion if

they don’t like either options

• Suggested fix: provide another option to allow for user input

• Status: Not fixed. The premise of Muncher is limited choice, so we do not want users to

input too much. The concern of opinion expression is addressed by having the option to reject the

final decision, which will then pull out the next best restaurant option.

�8

3) H2-3: No way to return after modifying settings with the (...) button.

Clicking back on the conversation is not intuitive

• Suggested fix: Consider a < button

• Status: Fixed

4) H2-5: Booking a reservation, which is a big step, is only done with one tap

• Suggested fix: Presenting a confirmation button before committing reservation

• Status: Fixed, by having an extra layer of confirmation

�9

5) H2-5: It would not be convenient to repeat the entire process if the

restaurant is not open or unavailable for reservation

• Suggested fix: N.A.

• Status: Not fixed. We are using Wizard of Oz techniques here and assume the backend will

deal with this, not the UI.

6) H2-6: On outing info page, there is no clear distinction between actionable

vs. non-actionable items. Users have to memorize settings that are clickable

• Suggested fix: Make clickable items prominent and different

• Status: Fixed, by making clickable items have huge icon and > button

�10

7) H2-7: In the drag and drop part, it doesn’t seem like the up and down

arrows have a function

• Suggested fix: Remove redundant arrows

• Status: Fixed

8) H2-9: Chat-based systems aren’t irreversible, so there’s no way to undo an

accidental vote

• Suggested fix: N.A.

• Status: Not fixed. Multiple users input multiple votes, so accidental votes do not have much

impact. The undo feature is not implemented for simplicity, and users can still reject restaurants at

the final step. This might be something we can look into in the future as a premium feature

Other changes

1) Included cut-off time for each action item and decision so that Muncher

can move the decision-making process along, if there are users who do not check

the app or respond

• This time is shown by the moving green bar. Once the bar hits full, time is out

�11

Prototype Implementation
Tools

We started out making the hi-fi prototype using Sketch for design and Xcode for the
implementation. However, we quickly found that the learning curve for the language Swift was too

steep for us, without having anyone who has prior iOS development experience. As a result, we
switched to the hybrid tool, Ionic, as our framework because it gave us more flexibility and slightly

more familiarity.

We switched from Xcode to Ionic as our framework because it gave us more flexibility as to the

hybrid approach. Ionic made the implementation easier. It was faster to learn the angular.js
language used in ionic than the Swift language, and we could straight up code the Ionic app

whereas Xcode had us doing storyboard stuff in a graphical way.

For our languages, we used HTML, CSS, and JavaScript. We also imported the angular.js and

ionic.js libraries and used Sublime as our editor. Lastly, Ionic’s iOS simulator helped us visualize
things.

Wizard of Oz

�12

Our solution concept depended heavily on an AI backend that we did not have time to build out. As

a result, we smartly employed Wizard of Oz techniques throughout to make the Muncher genie
respond to user input in a simple and believable manner. For example, Muncher is supposed to

provide suggestions based on the users’ profile preferences, but we just made the assumption that

our app did, and restaurant suggestions are based on the group’s overall preferences, not just the
individual user’s. Furthermore, Muncher gives very generic text replies in response to whatever

the user types in, so as to mimic an actual conversation as a genie.

Hard-coded Data

Similar to where we applied Wizard of Oz techniques, we hard-coded Muncher’s responses as well
as the restaurant cards that appeared.

Future features

Our ambitions for Muncher have grown beyond the class. The most basic of features to implement

next is having integration with phone contacts and/or Facebook so people can actually use the app

with their groups. Most importantly, we need to build out the backend AI to have a functioning
Muncher genie that is at the core of our solution. Beyond these, we also hope to, at some point,

implement the Discover and History features, if we do choose to continue pursuing this project.
Discover would have a Tinder-like UI/UX, where users get to swipe on restaurants individually to

discover new dining places. History would be where users can look at places they have been to,

and we will focus that feature on user-driven content creation, such as reviews, social etc.

Conclusion
It has been a wonderful journey with a fantastic team. Our solution concept for tackling the
problem of deciding a place to eat in groups has evolved throughout the last 10 weeks in this class

as we went through the rapid prototyping and user testing phases. This allowed us to hone in on a

pain point of many people, and decide on a Muncher genie as the backbone of our value-added
solution. As we moved from the med-fi to hi-fi prototype, the heuristic evaluation feedback

allowed us to discover usability issues and design errors. We acted on these fixes to refine our UI
and tighten the process flows for users of Muncher. Although we have come a long way, there is

still much to work on for the future, but we are thankful for all the help and feedback throughout

this project development process that have allowed us to come so far.

�13

