HYPOTHESISTESTING

Scott Klemmer and Michael Bernstein

Analyzing your data in 3 questions I. What does my data look like? Explore your data graphically

- Plot all your data Plot several different summaries
- 2. What are the overall numbers? Aggregate statistics for each condition Usually mean and standard deviation
- 3. Are the differences "real"? Compute significance (p value) Likelihood that results are due to chance

Is my coin biased?

Null hypothesis

Scientific default skepticism: the coin is balanced Goal: falsify the null hypothesis

How likely is 13 heads or 13 tails? •Or even more? # heads Probability # heads Probability 0.17619705 0.0000095 |O| $\left(\right)$ 0.16017914 0.00001907 0.12013435 0.000 | 8 | 20 |2|2 0.00/087/9 0.07392883 3 13 0.00462055 0.03696442 4 4 0.01478577 0.01478577 5 150.03696442 0.00462055 6 6 0.07392883 0.00 | 087 | 9 |7 0.000 | 8 | 20 0.12013435 8 8 0.16017914 0.0000 | 907 9 9

0.0000095 20

Sum the probabilities

heads Probability 0.0000095 0.0000 | 907 0.000 | 8 | 20 0.00 | 087 | 9 0.00462055 0.01478577 0.03696442 \bigcirc 0.07392883 0.12013435 8 0.16017914 9

heads Probability 0.17619705 |0|0.16017914 0.12013435 |2|0.07392883 3 0.03696442 14 0.01478577 150.00462055 6 0.00/087/9 0.000 | 8 | 20 8 0.0000 | 907 9 0.0000095 20

The sum is...

- •Summed probability: p=0.263
- 14 or more: p=0.11
- 15 or more: p=0.04

How low does the probability need to be for us to declare the coin biased?

•Thus, we'd expect 13 or more heads (or 13 or more tails) roughly 25% of the time we flip a coin twenty times

Statistical at p=.05

one in twenty occurrences is a scientific norm

Statistical significance

The process in a nutshell

- Take note of our outcome, compared to a baseline
 - I3 heads out of 20 coin flips, compared to an unbiased coin
 - •200 signups out of 1000 pageviews, compared to our control interface getting 180 signups out of 1000 pageviews
 - •Average of 20 photos posted per month with our new interface, compared to 19 with our old interface
- •Sum the probability of all outcomes at least that unlikely •Compare to statistical significance margin p=.05

FOW do we calculate the probability?

today: two statistical tests

Pearson's chi-square test

When do l use a chi-square test?

- •Chi-square compares count data
 - •"My coin produced thirteen heads out of twenty, compared to an unbiased coin that would produce ten heads."
 - 'Twenty people clicked on the banner when it was blue, vs. forty people clicked on it when it was black."
- •Chi-square cannot compare continuous measures •"The average runner with our shoes ran 18 miles." •"The average time to completion with was 100 seconds with Interface A and 140 seconds with Interface B."

Compare observed vs. expected

heads

observed

expected

tails

Pearson's Chi-Squared statistic $\chi^2 = \frac{(observed - expected)^2}{expected}$

Sum this value over all possible outcomes

These calculations produce a chi-square distribution

 $\chi^2 = |.8|$

Very likely

0.4 0.3 0.2 0.1 0.0

0.5

0 | 2 3 4 5 6 chi-square statistic with one degree of freedom

Calculating the chi-square statistic

•Use R > pchisq(1.8, 1)[1] 0.8202875

- the statistic: we need the rest. •So, the p value is 1 - 0.82.
- p=0.18: we cannot reject the null hypothesis.

•These calculate the value of the distribution to the left of

What if the trend continued?

Say we tossed a coin 60 times, and saw the same pattern: 39 heads out of 60

heads

observed

expected

What if the trend continued? (2) • What is the p-value?

> pchisq(5.4, 1)
[1] 0.9798632
> 1 - pchisq(5.4, 1)
[1] 0.02013675

• p = 0.02, so the difference is significant

Example: Improved click-throughs?

- A web site has a button labeled "sign up".
 10% of visitors click the button.
- They create an alternative, "learn more". It gets 1000 visitors and 119 conversions.
- Can we say with confidence that the "learn more" button has a higher click-through rate than the "sign up" button?

Example: Improved click-throughs?

The odds that the observed difference happened by chance is (just barely) p<0.05
The change (probably) improved click rate

What about continuous data?

Which teaching style produces higher test scores?

Normal Michael (control) 89pts on final exam

Hipster Michael

tetest

Often, continuous data is normally distributed.

Std. dev.

I I I Mean

t-test: do two distributions have the same mean?

likely have different means

$\mu_1 \mu_2$

likely have the same mean (null hypothesis)

How different are the means?

VS.

 $\mu_1 - \mu_2$

Normal Hipster

Normal Hipster

Hipste
95
88
90
87
90
90
91
86
90
88
$\mu_2 = 9$
$\sigma_2^2 = 9$

These calculations produce a t distribution

0.4 0.3 Probability 0.2 $\bigcap_{}$ 0.0

Very unlikely

Very likely

t = .92

t statistic with eighteen degrees of freedom

What are degrees of freedom?

If we have three datapoints and we know their average, how many datapoints can vary? $\frac{\Box + \Box + \Box}{3} = 5$ Knowing the average of three numbers, we have two degrees of freedom.

> So, for a t-test with two groups, we have: $(N_1 - 1) + (N_2 - 1)$

Degrees of freedom for each test

- Chi-square: number of categories I
 - •"If we knew the total number of observations, how many categories' counts can vary?"
 - •A/B test: (2-1) = 1 degree of freedom
 - •A/B/C test: (3-1) = 2 degrees of freedom
- •t-test: (observations 1) for each categories, so N 2
 •"If we knew the average of the observations, how many observations can vary?"
 •A/B test with 100 people per condition: 98 degrees of freedom

Is the t-test significant? ·Just like the chi-square test, we need to look this up:

> pt(.92, 18) [1] 0.8151308 > 1 - pt(.92, 18) [1] 0.1848692

•So p=.18, not significant

What happens if we had 4x the observations?

Before (N=20): $\mu_1 - \mu_2$ $t = \frac{\rho_{1}}{\sqrt{\frac{\sigma_{1}^{2}}{N_{1}} + \frac{\sigma_{2}^{2}}{N_{2}}}}$ 91.5 - 90.2 $\frac{9.83}{10} + \frac{9.96}{10}$ 10 $\mathbf{V} = \mathbf{I}\mathbf{U}$ = .92p=.18

After (N=80): $t = \frac{\mu_1 - \mu_2}{\pi}$ $\sqrt{\frac{\sigma_1^2}{N_1} + \frac{\sigma_2^2}{N_2}}$ 91.5 - 90.2 $+\frac{9.96}{40}$ V 40 = 1.84p=.03

More to earn...

GOOGIE ANOVA

•This "unpaired" t-test is for between-subjects experiments. What if we had a within-subject experiment?

Google

paired t-test

 The t-test can only handle two conditions. What if we have three or more?

Warning: only use a t-test if the data looks roughly normally distributed

looks good

looks exponential

looks bimodal

Which to use?

chi-square test: count data t-test: continuous data

This insight owes a lot to beer

Summary

- To get a feel for your data, graph it all
- 'mirages'. It formalizes "we're pretty sure".
- Two common techniques:
 - For comparing rates: chi-square
 - For comparing averages: t-test

Statistics provides tools to distinguish 'real' trends from