
U N C H A R T E D
Travel for 20-somethings

Team

Moustafa Asfour: Development, User Testing
Raissa Largman: Development, Design
Matt Taylor: Development, Documentation, Web Master
Kate Wendell: Team Manager, Design

Problem and Solution Overview

20-somethings are eager and frequent travelers, but they rarely rely on travel
guides for recommendations. They find these tools frustrating for being too touristy, and
not offering suggestions relevant to their interests and preferences. For these users,
travel planning is a dreadful process that involves wading through extensive information
on destinations, activities, and accommodations, and ultimately making decisions they
still don’t feel confident about.

Designed specifically for 20-somethings, Uncharted helps users explore
destinations and jumpstart their travel plans. Each destination offers a quick snapshot of
a possible trip, using hi-definition images and targeted activity suggestions. We also
recommend the top place to stay for budget travelers. Users can filter destinations to
find ones in specific regions, and use wishlists to save and organize the destinations you
love.

Uncharted lets users daydream about the perfect vacation without battling
information overload, or stressing over options and decisions to make. By narrowing our
focus to initial travel planning and targeting 20-something travelers, we can provide
content relevant to our users, and at the level of detail they need to feel confident in
booking their travel plans.

Tasks & Interface Scenarios

Our main objective with Uncharted is to make discovering new destinations
delightful and stress free. It was, therefore, a priority to make browsing destinations, our
core purpose, as simple as possible. Currently, we found our users browse destinations

by asking friends for recommended destinations and googling for top things to do in that
area. We aim to simplify this process by putting the best destinations at their fingertips,
using images and brief notes to help users image a couple days in each location after just
a glance. Browsing destinations occurs in the Explore tab of the menu, and is
accomplished by swiping right and left between destination pages, and tapping to view
the trip details page on any intriguing destinations.

Main destination screen (left) and trip details page (right)

The medium complexity task is filtering the destinations by general region. Users

that come into the application with a more specific goal, for example finding a good city
to visit in Europe, or a wild adventure in Africa, can use filters to accomplish this task. We
found that many users have a vague idea of the kind of destinations they are looking for,
and/or which they typically enjoy most. In order to leverage this knowledge, and improve
upon current tools that don’t take these preferences into account, allowing users to filter
was critical. We initially imagined offering a variety of filters, including geographical
region, setting (outdoors v. urban), and budget. However, in order to simplify the user
experience and focus our application, we decided to only implement geographic filtering,
as our users unanimously agreed it was the most useful for them. To filter the
destinations seen in the Explore tab, users navigate to the filters page via the menu, and
then choose a continent by tapping its icon. We indicate an active filter in the explore
section with the outline of that continent on the upper right corner of the screen.

Finally, the most complex task is saving and organizing destinations in wishlists.
We found that users do not typically search for destinations in isolated occasions, but
instead consider a couple potential destinations, or collect a series of destinations to visit
on longer journeys. Wishlists help in the logistics of travel planning, as they help users
compare options directly, or formulate a plan to travel though all desired destinations.
While browsing in the Explore tab, users can add destinations to a default “favorites” list
by quickly tapping the heart on the lower right of the screen. Long tapping the heart
allows users to add the destination to a custom list they create. Users can later review
their lists by navigating to the Wishlists page from the menu.

Major Usability Problems Addressed

The most severe problem, severity 4, reported in our heuristic evaluation was an

issue with user control and freedom. We intended the swiping navigation in the explore
section to be a quick and easy way to find the destinations that interest you and pass on
the ones that don’t. However, the evaluators found that it is easy for users to swipe past
destinations by mistake, or want to revisit ones they maybe weren’t sure about at first. To
correct this issue, we implemented sipe right, allowing users to return to destinations
they have recently passed.

The second usability issue we encountered was a violation of visibility of system
status on the trip details page, severity 3. The evaluators reported that it is unclear how
to exit the trip details page, as there were no visual cues that tapping anywhere would
take you back. Additionally, we thought the transition from the main destination screen
to the trip details screen was too jarring and disassociated the user from their current
task. In order to make it more clear how you arrived at the trip details screen and how
you would exit the screen, we made the screen on a translucent overlay of the main
destination screen and added a visible back button.

Initial trip details page (left) and revised version with back button and translucent background (right)

There was a similar issue with the add to wishlist page being too discontinuous

with the browsing pages, and missing a back or exit button. To fix this, we designed a
translucent black overlay, similar to our new trip details design, to make the flow more
continuous, and also added a close button to allow uses to abort if needed.
Implementing this page however, proved to be a challenge and we were not able to
develope it exactly as we wanted. We ended up using an entirely new screen, but made
the background consistent with the other pages to minimize disruption.

Original add to wishlist page, accessed by long tapping a heart (left), re-designed version (middle), and final version
revision due to technical implementation problems.

We encountered another visibility of system status issue, severity 3, with filtering.

The evaluators reported that there should be a visual indication of an active filter on in
the Explore section of the app to avoid confusion around why the destinations are
limited. To remedy this issue, when a filter is active we display the outline of that
continent on the destinations pages as you scroll through. You can also use this icon to
cancel the filter, in order to avoid navigating through the menu to do so.

Added a filter indicator in the explore section (icon top right)

The evaluators also reported that the lack of more specific location filtering was a
violation of flexibility and efficiency of use, severity 3. As a group, we disagreed that this
was a violation and decided not to implement their suggestions as we believed it would
distract from our core purpose. Continent level filtering is as specific as we would want to
allow, as the purpose of our application, for example, is to help users find new
destinations for their winter holiday in South America, not to explore different villages in
the south of France. We believe users in the second bucket would be beyond the initial
travel planning stages that we are targeting with Uncharted.

Another flaw in our design had to do with the similarity of the wishlists page, and
the page to view the destinations in a single wishlist. Our designs for these two pages
were essentially the same, showing destination images in rectangles with with text
overlaid on them. Especially because a user would navigate between these two pages
frequently, this was a violation of visibility of system status and the two pages needed to
be more visually distinguished from one another. To fix this, we moved the text on the
single wishlist page to below the destination image, and added more detail by including
the destination description. This makes the individual list page clearly more detailed at a
glance, indicating it is the more specific list or page.

Original wishlist and individual list page (left) and revised version to distinguish the two (right)

We also found that it wasn’t perfectly clear how to use our menu to navigate

between tasks. We originally had icons for the filters and wishlists page, and used the
word “destinations” to link to the main page where you swipe between destinations. We
didn’t think destinations needed to be highlighted in the menu as users would spend
most of their time in that section, and wouldn’t use the menu to get there. For example,
selecting a continent on the filters page would automatically take you back to the
destinations pages, you do not have to use the menu. However, our heuristic evaluation
said this was a violation of consistency and standards, so we redesigned the menu to
have an icon for each of the three major tasks in the application. To comply with visibility

of system status, we planned to indicate which section the user was currently in by
making the icon a different color or the background darker, but we unfortunately did not
get to implementing this.

Original menu (left) and its revised version with three sections (right)

Design Evolution

We first tested our product concept by conducting user tests with a paper

prototype. We found that our target users really supported the core concept of simplified
destinations pages and details, confirming that information overload is a huge issue with
current travel planning tools. Overall, our testers were very happy with the information
we provided on the trip details page. We also gained a lot of insight on how users
thought about finding destinations which helped simplify and narrow our filtering
options. Our paper prototype allowed users to filter by geographic location, setting
(urban, mountain, beach etc), or activity (cultural, outdoors, nightlife). We found users
were overwhelmed by the options and didn’t understand how they were different from
one another. Users expressed some anxiety when faced with all of the choices and spent
a lot of time navigating through the pages, making the task completion time very high.
When asked which type of filter was most valuable to them, all users replied geographic
filtering. They explained that filtering by continent helped them implicitly filter by the
other categories as well. For example, users knew they could expect more
outdoors-focused destinations when choosing Australia as compared to Europe.
Similarly, users had a good general concept of which regions were expensive for them to
travel to and live in, so geographic filtering helped them find destinations in their price
range as well. Our biggest revisions after the paper prototype and user testing, therefore,
were in re-designing the filters task to be solely focused on geographic filtering.

User interacts with filters page of paper prototype during user testing

With the insight we gained from our paper prototype user tests, we designed our
second iteration of Uncharted on proto.io, an online prototyping tool. Our
medium-fidelity prototype was evaluated by classmates for design heuristic violations.
The majority of the feedback we received had to do with having more consistency
between screens that visually unified the application and indicated where the user was in
the flow of each task. In our revised design, we utilized a number of translucent black
overlays to allow the user to see through to the previous screen, reducing jarring screen
transitions. We created this updated design, the third iteration of our application, in
proto.io in order to try a couple different strategies for solving the violations wihtout
having to code them. When we were happy with our revisions, we started development.

Left two screens are original medium-fi prototype, right two screens are the revised version

Our final iteration, our high-fidelity prototype, was based on the second iteration
of our proto.io prototype. It was developed in the Javascript framework Meteor and
operates as a mobile website. We had to make a few design changes based on technical
implementation, however, including the add to wishlist page.

Browse destinations screens in final high fidelity prototype

Prototype Implementation

We developed our highfidelity prototype with the Javascript framework Meteor. We

choose Meteor because none of our team members had experience with native app
development, but we all had some familiarity with Javascript which meant that the
development responsibilities could be shared. One of meteor’s biggest advantages is its
reactive programming model that extends from the database to the users screen, all using the
same language. This allows for real time updating, eliminating the need to update views when
backend changed states. These features were particularly helpful in linking routes to our
various templates, which required dramatically less work than it would otherwise.

Meteor presented some challenges as well, however. Because it is a relatively new
framework there is less documentation and help available online, which meant it was more
difficult to find the best strategies to accomplish some tasks. Additionally, meteor is not
catered to mobile as it lacks common functionality like touch support. Therefore, in order to
make our application run like a mobile website, we had to integrate with jQuery mobile which
was a tricky processes. Even with jQuerey mobile, implementing the various touch events we
wanted to support was difficult. We had to activate and deactivate listeners for tap, long tap
and swipe in various methods to prevent these events from firing at the same time. jQuery
mobile also introduced some styling problems that we had to fix by revising the source code.

The most major feature we were not able to implement in time is creating a custom
wishlist. We hard coded in a couple example lists (“Summer ‘15”, “Spring Break”), but there is
no functionality for the user to create their own custom lists. Implementing this was a low
priority because we were able to communicate the concept in the prototype with the hard
coded lists, and unfortunately we ran out of time. Secondly, we want users to be able to
remove wishlists, and remove individual destinations from a wishlist if they want, but we didn’t
prioritize this functionality as it isn’t central to our major tasks. We imagine this would be
accomplished by swiping left on the list or destination, similarly to deleting a text conversation
in iOS.

Another feature we would add if we built out the application, is the ability to view a
wish list in map form. We imagining adding a map pin for each destination in the list. Our
users said this would be advantageous when planning a longer journey with multiple
cities/stops to be able to visually see the best route through their desired spots.

