

Outline

- Action analysis
- GOMS? What's that?
- The G, O, M, & S of GOMS
- How to do the analysis
- Automated evaluation tools
- Team Break (~50 minutes)

- generally done hierarchically (similar to task analysis)

Quick Example

- Goal (the big picture)
 go from hotel to the airport
- Methods (or subgoals)?
 walk, take bus, take taxi, rent car, take train
- Operators (or specific actions)
 locate bus stop; wait for bus; get on the bus;...
- Selection rules (choosing among methods)?
 - Example: Walking is cheaper, but tiring and slow
 - Example: Taking a bus is complicated abroad

Goals

- Something the user wants to achieve
- Examples?
 - go to airport
 - delete file
 - create directory
- Hierarchical structure
- may require many subgoals

Methods

- - can include other goals
- Assumes method is *learned & routine*
- Examples
 - drag file to trash
 - retrieve from long-term memory command

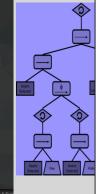
Operators

- Specific actions (small scale or atomic)
- Lowest level of analysis – can associate with times
- Examples
 - Locate icon for item on screen
 - Move cursor to item
 - Hold mouse button down
 - Locate destination icon
 - User reads the dialog box

Selection Rules

- If > 1 method to accomplish a goal, Selection rules pick method to use
- Examples
 - IF < condition> THEN accomplish < GOAL>
 - IF <car has automatic transmission> THEN <select drive>
 - IF <car has manual transmission> THEN <find car with automatic transmission>

GOMS Output Execution time add up times from operators assumes ? experts (mastered the tasks) & error free behavior very good rank ordering absolute accuracy ~10-20% Procedure learning time (NGOMSL only) accurate for relative comparison only doarnit inducto time for learning domain


doesn't include time for learning domain knowledge

GOMS Output Used To

- Ensure frequent goals achieved quickly
- Making hierarchy is often the value
 - functionality coverage & consistency
 - does UI contain needed functions?
 - consistency: similar tasks performed similarly? – operator sequence
 - in what order are individual operations done?

How to do GOMS Analysis

- Generate task description
 - pick high-level user Goal
 - write Method for accomplishing Goal
 may invoke subgoals
 - write Methods for subgoals
 - this is recursive
 - stops when Operators are reached
- Evaluate description of task
- Apply results to UI
- Iterate!

Comparative Example – Unix shell

- Goal: Delete a File
- Method for accomplishing goal of deleting file
 - retrieve from Long term memory that command verb is "rm"
 - think of directory name & file name and make it the first listed parameter
 - accomplish goal of entering & executing command
 - return with goal accomplished

Comparative Example - Windows

- Goal: Delete a File
- Method for accomplishing goal of deleting file
 find file icon
 - accomplish goal of dragging file to trash
 - return with goal accomplished

Comparative Example – Unix shell

- Goal: Remove a directory
- Method for accomplishing goal of removing a directory
 - ????

ist login: Sun Jan 6 22:00:02 on ttys000 JV-Phoenix:~ LAJV\$ <mark>Remove a Directory?</mark>

3

Comparative Example – Unix shell

- Goal: Remove a directory
- Method for accomplishing goal of removing a directory
 - accomplish goal of making sure directory is empty
 - retrieve from long term memory that command verb is 'rmdir'
 - think of directory name and make it the first listed parameter
 - accomplish goal of entering & executing command
 - return with goal accomplished

Comparative Example - Windows

- Goal: Remove a directory
- Method for accomplishing goal of removing a directory
 - ????

Comparative Example - Windows

- Goal: Remove a directory
- Method for accomplishing goal of removing a directory
 - find folder icon
 - accomplish goal of dragging folder to trash
 - return with goal accomplished
- Note the consistency with delete file on <u>Windows</u> (GUI)! This makes it much easier.

What GOMS Can Model

- Task must be goal-directed
 - some activities are more goal-directed
 creative activities may not be as goal-directed
- Task must use routine cognitive skills – as opposed to problem solving
 - good for things like machine operators

Applications of GOMS

- Compare different UI designs
- Profiling (time)
- Building a help system? Why?
- modeling makes user tasks & goals explicit
- can suggest questions users might ask & the answers

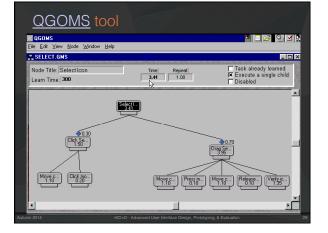
View	Mailbox	Message	Format	Window	Help			
Columns Sort By		Þ	-		Search	20	8	
			•		Menu Items		Cc Address Field	
Exp	anize by Tl and All Thr apse All Th	eads						
V Cc /	Address Fie		⊃~≆B					

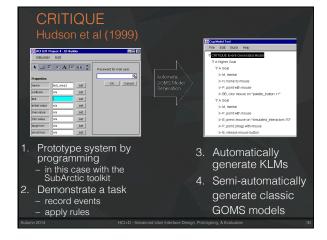
Real-world GOMS Applications

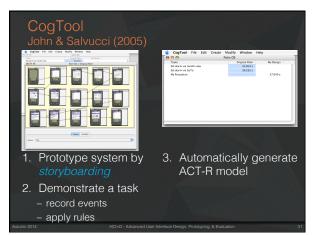
- Keystroke Level Model (KLM)
 - Mouse-based text editor
 - Mechanical CAD system
- NGOMSL
 - TV control system
 - Nuclear power plant operator's associate
- CPM-GOMS
 - Telephone operator workstation

Advantages of GOMS

- Gives qualitative & quantitative measures
- Model explains the results
- Less work than *large* user study no users!
- Easy to modify when UI is revised
- Research: tools to aid modeling process since it can still be tedious

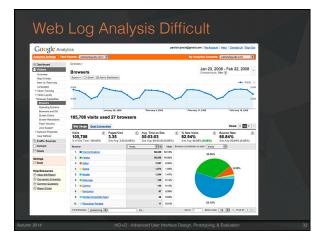

Disadvantages of GOMS


- Not as easy as HE, guidelines, etc.
- Takes lots of time, skill, & effort
- Only works for goal-directed tasks
- Assumes tasks performed by *experts without error*
- Does not address several UI issues,
 readability, memorizability of icons, commands...



Automated GOMS Tools

- Can save, modify & re-use the model
- Automation of execution time calculation, etc.

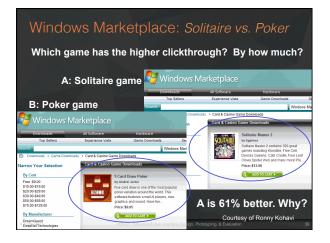


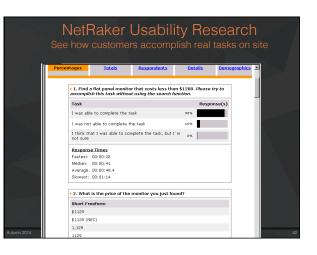
Automated Analysis & Remote Testing

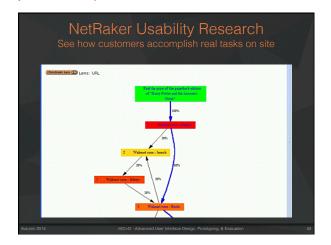
• Log analysis – infer user behavior by looking at web server logs

• A-B Testing

- show different user segments different designs
- requires live site (built) & customer base
- measure outcomes (profit), but not why?
- Remote user testing
 - similar to in lab, but online (e.g., over Skype)







Advantages of Remote Usability Testing

• Fast

- can set up research in 3-4 hours
- get results in 36 hours
- More accurate
 - can run with large samples (50-200 users \rightarrow stat. sig.)
 - uses real people (customers) performing tasks
 - natural environment (home/work/machine)
- Easy-to-use
 - templates make setting up easy
- Can compare with competitors
 - indexed to national norms

Disadvantages of Remote Usability Testing

- Miss observational feedback – facial expressions
 - verbal feedback (critical incidents)
- Need to involve human participants

 costs some amount of money (typically \$20-\$50/person)
- People often do not like pop-ups

 need to be careful when using them

Summary

• GOMS

- provides info about important UI properties
- doesn't tell you everything you want to know about UI
 only gives performance for expert, error-free behavior
- hard to create model, but still easier than user testing
 changing later is much less work than initial generation

Automated usability

- faster than traditional techniques
- can involve more participants \rightarrow convincing data
- easier to do comparisons across sites
- tradeoff with losing observational data

Next Time

- Guest Lecture
 - Irene Au (Design Operating Partner at Khosla Ventures)
 - She will mainly be taking questions please come up with one question each so we have a lively discussion
- Assignments
 - #5 Web site (online by late Thur night)
 if you need a few extra days let your CA know
 - #12 Hi-fi Prototype #3 (midway milestone on Fri)

