
stanford hci group / cs147

http://cs147.stanford.edu04 December 2007

Software Tools

Scott Klemmer
tas: Marcello Bastea-Forte, Joel Brandt,
Neil Patel, Leslie Wu, Mike Cammarano









Developers are People Too



Tools are Interfaces Too



Source: Wikipedia



Example: refactoring support

A code refactoring is any change to a 
computer program's code which improves 
its readability or simplifies its structure 
without changing its results.

Source: Wikipedia



And workflow support

Source: Wikipedia, collab.net



10

Extreme Programming



11

Why use toolkits?

Code reuse saves programmer time
50% of code is for the GUI [Myers & Rosson, CHI ’92]

Consistent look & feel across apps
Easier to modify and iterate the UI
Make UI development accessible to more 
people

Non-artists
Non-programmers???



12

What should tools do?
Help design the interface given a specification of the tasks.
Help implement the interface given a design.
Help evaluate the interface after it is designed and propose 
improvements, or at least provide information to allow the designer to 
evaluate the interface.
Create easy-to-use interfaces.
Allow the designer to rapidly investigate different designs.
Allow non-programmers to design and implement user interfaces.
Provide portability across different machines and devices.
Be easy to use themselves.



13

Toolkits

A collection of widgets
Menus, scroll bars, text entry fields, buttons, etc.

Toolkits help with programming
Help maintain consistency among UIs

Key insight of Macintosh toolbox

è Path of least resistance translates into getting 
programmers to do the right thing
Successful partially because address common, low-
level features for all UIs
è Address the useful & important aspects of UIs



14

Why Tools?
The quality of the interfaces will be higher. This 
is because:

Designs can be rapidly prototyped and implemented, 
possibly even before the application code is written.
It is easier to incorporate changes discovered through 
user testing. 
More effort can be expended on the tool than may be 
practical on any single user interface since the tool will 
be used with many different applications.
Different applications are more likely to have consistent 
user interfaces if they are created using the same user 
interface tool. 
A UI tool will make it easier for a variety of specialists to 
be involved in designing the user interface.



15

Why Tools, cont.
The user interface code will be easier and more economical to 
create and maintain. This is because:

There will be less code to write, because much is supplied by the tools.
There will be better modularization due to the separation of the user 
interface component from the application.
The level of expertise of the interface designers and implementers might 
be able to be lower, because the tools hide much of the complexities of the 
underlying system.
The reliability of the user interface may be higher, since the code for the 
user interface is created automatically from a higher level specification. 
It may be easier to port an application to different hardware and software 
environments since the device dependencies are isolated in the user 
interface tool.



16

Success of Tools

Today’s tools are highly successful
Window Managers, Toolkits, Interface Builders 
ubiquitous
Most software built using them
Are based on many years of HCI research
Brad A. Myers. “A Brief History of Human Computer Interaction 
Technology.” 
ACM interactions. Vol. 5, no. 2, March, 1998. pp. 44-54.



17

Application Types
Each has own unique UI style, and implementation challenges
Word processors
Drawing programs

CAD/CAM 
Painting programs
Hierarchy displays, like file browsers 
Mail readers 
Spreadsheets
Forms processing
WWW
Interactive games
Visualizations
Automated-teller machines (ATM) 
Virtual Reality 
Multi-media 

Video 
Animation 

Controlling machinery



18

Metaphors
Content metaphors 

desktop 
paper document 
notebook with tabs 
score sheet , stage with actors (Director) 
accounting ledger (spreadsheet) 
stereo (for all media players) 
phone keypad 
calculator 
Web: "Shopping Carts" 
Quicken: "CheckBook" 

Interaction metaphors = tools, agents: "electronic secretary“



19

A Software Design Timeline

Brainstorming

Paper

Flash

UI Builder

IDE

Deployment



(after Myers)

Threshold and Ceiling



21

Discussion of Themes

è Address the useful & important aspects of 
UIs

Narrower tools have been more successful than 
ones that try to do “everything”
Do one thing well

è Threshold / Ceiling
Research systems often aim for high ceiling
Successful systems seem to instead aim for a 
low threshold
Impossible to have both?



Library



Architecture



24

Library and Architecture



25

Discussion of Themes, cont.

è Path of Least Resistance
Tools should guide implementers into better user 
interfaces
Goal for the future: do this more?

è Predictability
Programmers do not seem willing to release control
Especially when system may do sub-optimal things

è Moving Targets
Long stability of Macintosh Desktop paradigm has 
enabled maturing of tools



26

Window Managers
Multiple (tiled) windows in research systems of 
1960’s: NLS, etc.
Overlapping introduced in Alan Kay’s thesis 
(1969)
Smalltalk, 1974 at Xerox PARC
Successful because multiple windows help users 
manage scarce resources:

Screen space and input devices
Attention of users
Affordances for reminding and finding other work



27

Event Languages
Create programs by writing event handlers 
Many UIMSs used this style

Univ. of Alberta (1985), Sassafras (1986), etc.

Now used by HyperCard, Visual Basic, Lingo, 
etc.

Toolkits with call-backs or action methods are 
related

Advantages:
Natural for GUIs since generate discrete events
Flow of control in user’s hands rather than 
programmer’s

Discourages moded UIs



28

Graphical Interactive Tools
Create parts of user interface by laying out 
widgets with a mouse

Examples: Menulay (1983), Trillium (1986), Jean-
Marie Hullot from INRIA to NeXT
Now: Interface Builders, Visual Basic’s layout 
editor, resource editors, “constructors”

Advantages:
Graphical parts done in an appropriate, 
graphical way

èAddress the useful & important aspects of UIs

Accessible to non-programmers
èLow threshold



29

Interactive Prototypes



30

UI Builders



31

Example: Java Swing

GUI toolkit with a widget set and an API



32

Sequential Programs
Program takes control, prompts for input

command-line prompts (DOS, UNIX)

The user waits on the program
program tells user it’s ready for more input
user enters more input



33

Sequential Programs (cont.)
General Flow

Prompt user for input
Program reads in a line of text
Program runs for a while (user waits)
Maybe some output
Loop back to beginning

But how do you model the many actions a user 
can take?

for example, a word processor?
printing, editing, inserting, whenever user wants 
sequential doesn’t work as well for graphical and for 
highly-interactive apps



34

Example Interactions

scroll bar

close box

title bar

folder

size control



35

Modern GUI Systems

Three concepts:
Event-driven programming
Widgets
Interactor Tree

Describes how most GUIs work
Closest to Java
But similar to Windows, Mac, Palm Pilot



36

Event-Driven Programming

Instead of the user waiting on program, program 
waits on the user
All communication from user to computer is done 
via “events”

“mouse button went down”
“item is being dragged”
“keyboard button was hit”

Events have:
type of event
mouse position or character key + modifiers
the window the event is directed to



37

Event-Driven Programming

Mouse
Software

Keyboard
Software

Event Queue

All generated events go to a single event 
queue

provided by operating system
ensures that events are handled in the order 
they occurred
hides specifics of input from apps



38

Widgets
Reusable interactive objects
Handle certain events

widgets say what events they are 
interested in
event queue sends events to the 
“right” widget

Update appearance
e.g. button up / button down

ComboBox

Button

Button

RadioButton

RadioButton

TextArea

ComboBox

CheckBox

Button



39

Widgets (cont.)
Generate some new events

“button pressed”
“window closing”
“text changed”

But these events are sent to 
interested listeners instead

custom code goes there ComboBox

Button

RadioButton

RadioButton

TextArea

ComboBox

CheckBox



40

Widgets (cont.)

Mouse
Software

Keyboard
Software

Event Queue

//// See bottom of file for software license
package edu.berkeley.guir.lib.satin;
import java.awt.*;
import java.awt.event.*;
import edu.berkeley.guir.lib.satin.objects.*;

/**
* Satin constants.
*
* <P>
* This software is distributed under the 
* <A HREF="http://guir.cs.berkeley.edu/projects/COPYRIGHT.txt">
* </PRE>
*
* @version SATIN-v2.1-1.0.0, Aug 11 2000
*/
public interface SatinConstants {

//===========================================================================
//===   GLOBAL SATIN PROPERTIES   ===========================================

/**
* The name of Satin's properties file. Assumed to be in the current
* directory, from which Satin is started (via the java interpreter).
*/
public static final String SATIN_PROPERTIES_FILENAME = "satin.properties";

//===   GLOBAL SATIN PROPERTIES   ===========================================
//===========================================================================

//===========================================================================
//===   STYLE PROPERTIES   ==================================================

//// If you add any new Style properties, be sure to update the
//// Style.java file too.

public static final String KEY_STYLE_FILLCOLOR        = "FillColor";
public static final String KEY_STYLE_FILLTRANSPARENCY = "FillTransparency";

public static final String KEY_STYLE_MITERLIMIT       = "MiterLimit";

public static final String KEY_STYLE_DASHARRAY        = "DashArray";
public static final String KEY_STYLE_DASHPHASE        = "DashPhase";

//===   STYLE PROPERTIES   ==================================================
//===========================================================================

} // of interface

//==============================================================================

/*
Copyright (c) 2000 Regents of the University of California.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
SUCH DAMAGE.
*/

Widget



41

Interactor Tree
Decompose interactive objects into a tree

Display Screen

“F:\cs160\Public” window
title bar
horizontal scroll bar
contents area

“CDJukebox” folder
“Home Ent…” folder
…

…

“Web Newspaper” window
…



42

Main Event Loop
while (app is running) {

get next event
send event to right widget

}

Mouse
Software Events

//// See bottom of file for software license
package edu.berkeley.guir.lib.satin;
import java.awt.*;
import java.awt.event.*;
import edu.berkeley.guir.lib.satin.objects.*;

/**
* Satin constants.
*
* <P>
* This software is distributed under the 
* <A HREF="http://guir.cs.berkeley.edu/projects/COPYRIGHT.txt">
* </PRE>
*
* @version SATIN-v2.1-1.0.0, Aug 11 2000
*/
public interface SatinConstants {

//===========================================================================
//===   GLOBAL SATIN PROPERTIES   ===========================================

/**
* The name of Satin's properties file. Assumed to be in the current
* directory, from which Satin is started (via the java interpreter).
*/
public static final String SATIN_PROPERTIES_FILENAME = "satin.properties";

//===   GLOBAL SATIN PROPERTIES   ===========================================
//===========================================================================

//===========================================================================
//===   STYLE PROPERTIES   ==================================================

//// If you add any new Style properties, be sure to update the
//// Style.java file too.

public static final String KEY_STYLE_FILLCOLOR        = "FillColor";
public static final String KEY_STYLE_FILLTRANSPARENCY = "FillTransparency";

public static final String KEY_STYLE_MITERLIMIT       = "MiterLimit";

public static final String KEY_STYLE_DASHARRAY        = "DashArray";
public static final String KEY_STYLE_DASHPHASE        = "DashPhase";

//===   STYLE PROPERTIES   ==================================================
//===========================================================================

} // of interface

//==============================================================================

/*
Copyright (c) 2000 Regents of the University of California.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
SUCH DAMAGE.
*/

Keyboard
Software

Display Screen

“F:\cs160\Public” window
title bar
horizontal scroll bar
contents area

“CDJukebox” folder
“Home Ent…” folder
…

…

“Web Newspaper” window
…

Display Screen

“F:\cs160\Public” window
title bar
horizontal scroll bar
contents area

“CDJukebox” folder
“Home Ent…” folder
…

…

“Web Newspaper” window
…



43

What this means for design
Harder to use non-standard widgets

have to buy or create your own, ex. pie menus

Easy to re-arrange widgets and layout of app, but 
hard to change behavior (i.e. the code)

provides some support, not a lot
stresses importance of getting features right first

Harder to do things beyond mouse and keyboard
speech and sketching harder

Harder to do multi-user multi-device apps



44

Scripting Languages
First GUIs used interpreted languages

Smalltalk, InterLisp
Rapid development, supports prototyping

èLow threshold

Then C and C++ became popular
Now, bringing back advantages in scripting 
languages

tcl/tk, Python, perl
Visual Basic, Javascript

But language must contain general-purpose 
control structures



45

Model-View-Controller

Architecture for interactive apps
introduced by Smalltalk developers at PARC

Partitions application in a way that is
scalable
maintainable

Model

View

Controller



46

Example Application

Cardinal circles: 4
Blue squares: 2



47

Model

Information the app is trying to manipulate
Representation of real world objects

circuit for a CAD program
logic gates and wires connecting them

shapes in a drawing program
geometry and color

Model
View

Controller



48

View

Implements a visual display of the model
May have multiple views

e.g., shape view and numerical view

Model
View

Controller



49

Multiple Views

Cardinal circles: 4
Blue squares: 2



50

View

Implements a visual display of the model
May have multiple views

e.g., shape view and numerical view
Any time the model is changed, each view must 
be notified so that it can change later

e.g., adding a new shape

Model
View

Controller



51

Controller

Receives all input events from the user
Decides what they mean and what to do

communicates with view to determine which 
objects are being manipulated (e.g., selection)
calls model methods to make changes on 
objects

model makes change and notifies views to update

Model

View

Controller



52

View/Controller Relationship

“pattern of behavior in response to user events 
(controller issues) is independent of visual 
geometry (view issues)”

Controller must contact view to interpret what 
user events mean (e.g., selection)



53

Combining View & Controller

View and controller are tightly intertwined
lots of communication between the two

Almost always occur in pairs
i.e., for each view, need a separate controller

Many architectures combine into a single class

Model
View

Controller



54

Why MVC?
Combining MVC into one class or using global 
variables will not scale

model may have more than one view
each is different and needs update when model 
changes

Separation eases maintenance
easy to add a new view later 
new model info may be needed, but old views still 
work
can change a view later, e.g., draw shapes in 3-d 
(recall, view handles selection)



55

Adding Views Later

Cardinal circles: 4
Blue squares: 2



Example Frameworks : Ruby on 
Rails

Source: Wikipedia

Ruby on Rails MVC



Example Frameworks : Ruby on 
Rails

Source: http://www.onlamp.com/pub/a/onlamp/2005/01/20/rails.html?page=3

Figure 27. The modified recipe table
[in MySQL – the Model] 

Figure 29. The contents of 
recipe.rb 

Figure 31. One line of code in 
RecipeController [the Controller]



Example Frameworks : Ruby on 
Rails

Figure 30. Creating a new recipe page [the View] 
Source: http://www.onlamp.com/pub/a/onlamp/2005/01/20/rails.html?page=3



Implementing different time / 
different place systems

Source:  http://railsruby.blogspot.com/2006/03/mvc-model-view-controller-architecture.html, http://www.rubaidh.com/services/hosting/system-architecture

Model View Controller Ruby on Rails



60

Recap: What are Interface 
Toolkits?

Goal: make it easier to develop user 
interfaces by providing application 
developers with reusable components that 
accomplish common input and output needs
Toolkits have a well-planned architecture 
and API & provide a library



61

Drawbacks

Can be limiting – developers are likely to 
make the kinds of UIs that the toolkit makes 
easy
Traditional GUI toolkits are problematic for 
non-WIMP user interfaces such as:

Groupware
Physical UIs



62

Evaluating Toolkits

Ease of use
A toolkit’s API is a user interface, too! [Klemmer 
et al., 2004] evaluated the API of Papier-Mache

Depth, Breadth, and Extensibility
Systems issues

Speed
Portability



63

Current Research Challenges

Complex design space
e.g., Do we have to update the toolkit every 
time someone creates a new sensor or 
actuator?

Ambiguous input
Speech, gestures, computer vision, etc. aren’t 
recognized as accurately as mouse clicks. 
Should the toolkit handle the recognition?



64

Summary

I/O Toolkits provide reusable interface 
components to simplify UI development
Toolkit trap: it’s tempting to only make UIs 
that the toolkit makes easy, instead of 
making what’s best for a specific app
Toolkit types:

WIMP (Garnet, Swing, Motif, etc)
Speciality (Phidgets, iStuff, Papier-Mache, 
DiamondSpin, GroupKit, Peripheral Displays 
Toolkit, etc)



65

The Future of Design Tools
Supporting…

Fieldwork
Prototyping
Collaboration
Usability testing
and emerging interface styles, such as

mobile
recognition-based UIs (speech, pens, vision)
information appliances
multiple devices



Announcements

Experimental Participation
Everyone must have at least 1.5 units on CHIME
For those with less than 4 units on CHIME:

Either conduct a study of your prototype
Or participate in a study of someone else’s
When you’ve done this, email _____.

Midterm’s have been upcurved
Final Projects Presentations on 12/13 @7pm

Two parts: 1-minute madness, poster 
presentation



67

Further Reading
Books and  courses on Building UIs

Introduction to User Interface Software. Dan 
Olsen Jr. Morgan Kaufmann Publishers, 1998.
Courses with notes online:

Carnegie Mellon University 
http://www.cc.gatech.edu/classes/AY2001/cs4470_fall/

Georgia Institute of Technology 
http://www.cs.cmu.edu/~hudson/teaching/05-631/


