— t“

. v
corvmGra € 1984 BY SCERTIIC AMERCAN INC. ALL RIGHTS RESERVED

an Article from

SEPTEMBER, 1984 VOL.

' SCIENTIFIC
 AMERICAN

251, NO. 3

The sonata is tough for her to play on the violin.

SPECIFIER: THE -
NUMBER: SINGULAR
PREDICATE: ‘sonats’

SUBJECT:

TENSE: PRESENT
PREDICATE: ‘be<(IADJECTIVAL COMPLEMENT)>'

.

 PREDICATE: ‘tough <(1SENTENTIAL COMPLEMENT) >’

ADJECTIVAL
COMPLEMENT:

REPRESENTATION OF A SENTENCE in a way that makes ex-
plicit the linguistic relations among its parts has been a goal of the sci-
ence of linguistics; it is also a necessary aspect of the effort to design
computer software that “understands” language, or at any rate can
draw inferences from linguistic input. In this illustration a sentence is
given in “functional structure” form, which has the property that

130 -

when part of a sentence plays a role in another part, the former is
‘nested” in the latter. The nesting is shown by placing one box in
another, or (in three places) by a “string.” The sentence was analyzed
by Ronald M. Kaplan and Joan Bresnan of Stanford University and
the Xerox Corporation’s Palo Alto Research Center. Another func-
tional-structure diagram appears in the illustration on pages 142-143,

Computer Sof

fware

for Working with Language

Programs can manipulate linguistic symbols with great facility,

as in word-processing software, but attempts to have computers

deal with meaning are vexed by ambiguity in human languages

er is a mathematics machine: it is

designed to do numerical calcula-
tions. Yet it is really a language ma-
chine: its fundamental power lies in its
ability to manipulate linguistic tokens—
symbols to which meaning has been as-
signed. Indeed, “natural language” (the
language people speak and write, as
distinguished from the “artificial” lan-
guages in which computer programs are
written) is central to computer science.
Much of the earliest work in the field
was aimed at breaking military codes,
and in the 1950’s efforts to have com-
puters translate text from one natural
language into another led to crucial
advances, even though the goal itself
was not achieved. Work continues on
the still more ambitious project of mak-
ing natural language a medium in which
to communicate with computers.

Today investigators are developing
unified theories of computation that em-
brace both natural and artificial lan-
guages. Here I shall concentrate on the
former, that is, on the language of every-
day human communication. Within that
realm there is a vast range of software to
be considered. Some of it is mundane
and successful. A multitude of micro-
computers have invaded homes, offices
and schools, and most of them are used
at least in part for “word processing.”
Other applications are speculative and
far from realization. Science fiction is
populated by robots that converse as if
they were human, with barely a mechan-
ical tinge to their voice. Real attempts to
get computers to converse have run up
against great difficulties, and the best of
the laboratory prototypes are still a pale
reflection of the linguistic competence
of the average child.

The range of computer software for
processing language precludes a com-
prehensive survey; instead I shall look
at four types of program. The pro-

In the popular mythology the comput-

grams deal with machine translation, -

with word processing, with question an-

by Terry Winograd

swering and with the adjuncts to elec-
tronic mail known as coordination sys-
tems. In each case the key to what is
possible lies in analyzing the nature of
linguistic competence and how that com-
petence is related to the formal rule
structures that are the theoretical basis
of all computer software.

The prospect that text might be trans-
lated by a computer arose well be-
fore commercial computers were first
manufactured. In 1949, when the few
working computers were all in military
laboratories, the mathematician Warren
Weaver, one of the pioneers of com-
munication theory, pointed out that the
techniques developed for code break-
ing might be applicable to machine
translation. .

At first the task appears to be straight-
forward. Given a sentence in a source
language, two basic operations yield the
corresponding sentence in a target lan-
guage. First the individual words are
replaced by their translations; then the
translated words are reordered and ad-
justed in detail. Take the translation of
“Did you see a white cow?” into the
Spanish “¢Viste una vaca blanca?” First
one needs to know the word correspon-
dences: “vaca” for “cow” and so on.
Then one needs to know the structural
details of Spanish. The words “did” and
“you” are not translated directly but
are expressed through the form of the
verb “viste.” The adjective “blanca” fol-
lows the noun instead of preceding it as
it does in English. Finally, “una” and
“blanca” are in the feminine form corre-
sponding to “vaca.” Much of the early
study of machine translation dwelt on
the technical problem of putting a large
dictionary into computer storage and
empowering the computer to search ef-
ficiently in it. Meanwhile the software
for dealing with grammar was based on
the then current theories of the struc-
ture of language, augmented by rough-
and-ready rules.

The programs yielded translations so
bad that they were incomprehensible.
The problem is that natural language
does not embody meaning in the same
way that a cryptographic code embodies
a message. The meaning of a sentence in
a natural language is dependent not only
on the form of the sentence but also on
the context. One can see this most clear-
ly through examples of ambiguity.

In the simplest form of ambiguity,
known as lexical ambiguity, a single
word has more than one possible mean-
ing. Thus “Stay away from the bank”
might be advice to an investor or to a
child too close to ariver. In translating it
into Spanish one would need to choose
between “orilla” and “banco,” and noth-
ing in the sentence itself reveals which is
intended. Attempts to deal with lexical
ambiguity in translation software have
included the insertion of all the possibil-
ities into the translated text and the sta-
tistical analysis of the source text in an
effort to decide which translation is ap-
propriate. For example, “orilla” is likely
to be the correct choice if words related
to rivers and water are nearby in the
source text. The first strategy leads to
complex, unreadable text; the second
yields the correct choice in many cases
but the wrong one in many others.

In structural ambiguity the problem
goes beyond a single word. Consid-
er the sentence “He saw that gasoline
can explode.” It has two interpretations
based on quite different uses of “that”
and “can.” Hence the sentence has
two possible grammatical structures,
and the translator must choose between
them [see bottom illustration on page 133).

An ambiguity of “deep structure” is
subtler still: two readings of a sentence
can have the same apparent grammati-
cal structure but nonetheless differ in
meaning. “The chickens are ready to
eat” implies that something is about to
eat something, but which are the chick-
ens? One of the advances in linguistic

131

theory since the 1950’s has been the de-
velopment of a formalism in which the
deep structure of language can be repre-
sented, but the formalism is of little help
in deducing the intended deep structure
of a particular sentence.

A fourth kind of ambiguity-—semantic
ambiguity—results when a phrase can
play different roles in the overall mean-
ing of a sentence. The sentence “David
wants to marry a Norwegian” is an ex-
ample. In one meaning of the sentence
the phrase “a Norwegian” is referential.
David intends to marry a particular per-
son, and the speaker of the sentence has
chosen an attribute of the person—her
being from Norway—in order to de-
scribe her. In another meaning of the
sentence the phrase is attributive. Nei-
ther David nor the speaker has a partic-
ular person in mind; the sentence simply
means that David hopes to marry some-
one of Norwegian nationality.

A fifth kind of ambiguity might be
called pragmatic ambiguity. It arises
from the use of pronouns and special
nouns such as “one” and “another.”
Take the sentence “When a bright moon
ends a dark day, a brighter one will
follow.” A brighter day or a brighter
moon? At times it is possible for trans-
lation software to simply translate the
ambiguous pronoun or noun, thereby
preserving the ambiguity in the transla-
tion. In many cases, however, this strat-
egy is not available. In a Spanish trans-
lation of “She dropped the plate on the
table and broke it,” one must choose ei-
ther the masculine “/o” or the feminine
“la” to render “it.” The choice forces
the translator to decide whether the
masculine “plato” (plate) or the femi-
nine “mesa” (table) was broken.

In many ambiguous sentences the
meaning is obvious:to a human reader,

but only because the reader brings to the
task an understanding of context. Thus
“The porridge is regdy to eat” is unam-
biguous because one knows porridge is
inanimate. “There’s a man in the room
with a green hat on” is unambiguous
because one knows rooms do not wear
hats. Without such knowledge virtually
any sentence is ambiguous.

Ithough fully automatic, high-quality
machine translation is not feasible,
software is available to facilitate trans-
lation. One example is the computeriza-
tion of translation aids such as diction-
aries and phrase books. These vary from
elaborate systems meant for technical
translators, in which the function of
“looking a word up” is made a part of a
multilingual word-processing program,
to hand-held computerized libraries of
phrases for use by-tourists. Another
strategy is to process text by hand to
make it suitable for machine transla-
tion. A person working as a “pre-editor”
takes a text in the source language and
creates a second text, still in the source
language, that is simplified in ways fa-
cilitating machine translation. Words
with multiple meaningscan be eliminat-
ed, along with grammatical construc-
tions that complicate syntactic analysis.
Conjunctions that cause ambiguity can
be suppressed, or the ambiguity can be
resolved by inserting special punc-
tuation, as in “the [old men] and [wom-
en).” After the machine translation a
“post-editor” can check for blunders
and smooth the translated text.

The effort is somefiin®s cost-effective.
In the first place, the pre-editor and post-
editor need not be bilingual, as a transla-
tor would have to be. Then too, if a sin-
gle text (say an instruction manual) is to
be translated into several languages, a

Did you

see

a white cow ?

MACHINE TRANSLATION of text from one language into another was thought to be quite
feasible in the 1950’s, when the effort was undertaken. In the first step of the process (a) the
computer would search a bilingual dictionary to find translations of the individual words in a
source sentence (in this case Spanish equivalents of the words in the sentence “Did you see a
white cow?”), Next the translated words would be rearranged accordinig to the grammar of the
target language (3). The changes at this stage could include excision or addition of words. Final-
ly, the morphology of the translation (for example the endings of words) would be adjusted (c).

132

. 5

large investment in pre-editing may be
justified because it will serve for all the
translations. If the author of the text
can be taught the less ambiguous form
of the source language, no pre-editor
is needed. Finally, software can help in
checking the pre-edited text to make cer-
tain it meets the specifications for input
to the translation system (although this
is no guarantee that the translation will
be acceptable).

A machine-translation system em-
ploying pre- and post-editing has been
in use since 1980 at the Pan-American
Health Organization, where it has trans-
lated more than a million words of text
from Spanish into English. A new sys-
tem is being developed for the European
Economic Community, with the goal of
translating documents among the offi-
cial languages of the community: Dan-
ish, Dutch, English, French, ‘German,
Greek and Italian. Meanwhile the the-
oretical work on syntax and meaning
has continued, but there have been no
breakthroughs in machine translation.
The ambiguity pervading natural lan-
guage continues to limit the possibili-
ties, for reasons I shall examine more
fully below.

I turn next to word processing, that is,
to software that aids in the prepara-
tion, formatting and printing of text.
Word processors deal only with the
manipulation and display of strings of
characters and hence only with superfi-
cial aspects of the structure of language.
Even so, they pose technical problems
quite central to the design of computer
software. In some cases the end prod-
uct of a word-processing program is no
more than a sequence of lines of text.
In others it is a complex layout of ty-
pographic elements, sometimes with
drawings intercalated. In still others it
is a structured document, with chapter
headings, section numbers and so on,
and with a table of contents and an in-
dex compiled by the program.

The key problems in designing word-
processing software center on issues
of representation and interaction. Rep-
resentation is the task of devising data
structures that can be manipulated con-
veniently by the software but still make
provision for the things that concern the
user of the system, say the layout of the
printed pagé. Interaction takes up the
issue of how the user expresses instruc-
tions and how the system responds.

Consider the fundamental problem of
employing the data-storage devices of a
computer to hold an encoded sequence
of natural-language characters. The first
devices that encoded text were card-
punch and teletype machines, and so the
earliest text-encoding schemes were tai-
lored to those devices. The teletype ma-
chine is essentially a typewriter that con-
verts key presses into numerical codes
that can be transmitted electronically;

thus there are teletype codes for most
of the keys on a typewriter. The codes
include the alphabetic characters A4
through Z, the digits 0 through 9 and
common punctuation marks such as the
period and the comma. Standards are
harder to establish, however, for sym-
bols such as ¥, @, ¢ and }. And what
about keys that print nothing, such as
the tab key, the carriage-return key and
the backspace key?

The difficulties that arise in choos-
ing standards can be illustrated by one
peculiarity of text encoding. The tele-
type code distinguishes between a car-
riage return (which returns the type car-
riage to the beginning of the line with-
out advancing the paper) and a line feed
(which advances the paper without re-
positioning the carriage). Hence the end
of a line is marked by a sequence of
two characters: a carriage return and a
line feed. One code would suffice, and
so some programs eliminate either the
carriage return or the line feed, or they
replace both characters with another
code entirely. The problem is that vari-
ous programs employ different conven-
tions, so that lines encoded by one pro-
gram may not be readable by another.

The problems become worse when a
full range of characters—punctuation
marks, mathematical symbols, diacriti-
cal marks such as the umlaut—is consid-
ered. Moreover, word processing is now
being extended to languages such as
Chinese and Japanese, which require

thousands of ideographic characters,

and to languages such as Arabic and
Hebrew, which are written from right
to left. Coding schemes adequate for
English are useless for alphabets with
thousands of characters. It should be
said that the schemes continue to vary
because political and economic forces
play a role in the design of computer
systems. A given manufacturer wants to
promulgate a standard that suits its own
equipment; thus some present-day stan-
dards exist because they were offered by
a vendor that dominates a market. On
the other hand, technical matters such
as the efficiency of certain software run-
ning on certain hardware perpetuate dif-
ferences in detail. It will be quite a while
before universal standards emerge and
users gain the ability to transport text
from one word-processing system to
any other.

Encoding schemes aside, there is the
form of the letters themselves. On a
typewriter keyboard an A is simply an
A. Typographically, however, an A is
an A or an 4 or an A. In the new field
of digital typography the computer is a
tool for the design and presentation of
forms of type. Some of the efforts in
the field are applied to the forms them-
selves: in particular the representation
of characters as composites of dots and
spaces. Additional efforts go into the
devising of code for the computer stor-

Stay away from the banﬁ
M n 1. the rising terrain that borders a river or lake.

hdnk?i n 2. an establishment for the deposit, loan, issuance and transmission of money.

AMBIGUOUS MEANINGS permeate natural languages (that is, languages that people speak
and write) and thus subvert the attempt to have computers translate text from one language into
another. Here lexical ambiguity, the simplest type of ambiguity, is diagrammed. In lexical
ambiguity a word in a sentence has more than one possible meaning. In this case the word is
“bank” (color), which might equally well refer to either a river or a financial institution. A
translator must choose. The following four illustrations show more complex types of ambiguity.

He saw that gasoline can explode. _

NP

Pron Verb

He explode

NP

Pron

He

STRUCTURAL AMBIGUITY arises when a sentence can be described by more than one
grammatical structure. Here the conflicting possibilities for the sentence “He saw that gasoline
can explode” are displayed in the form of grammatical “trees.” In one of the trees the sentence
has a subordinate clause whose subject is “gasoline” (color); the sentence refers to the recogni-
tion of a property of that substance. In the other tree “gasoline can” is part of a noun phrase
(NP) meaning a container of gasoline; the sentence refers to the sight of a specific explosion.

133

I

age of text that combines different fonts
(such as Times Roman and Helvetica)
and different faces (such as italic and
boldface).

o far I have dealt only with stored
sequences of characters. Yet one of
the major tasks of a word-processing
program is to deal with margins and
spacing—with the “geography” of the
printed page. In the typesetting language
called TEX commands that specify non-
standard characters, change the style of

_ type, set the margins and so on are em-
" bedded in the text [see top illustration on

page 138). A command to TEX is distin-
guished from ordinary text by the back-

*, slash character (\). The stored text is

“compiled” by the TEx program, which
interprets the embedded commands in
order to create a printed document in
the specified format.

The compiling is quite complex, and a
good deal of computation is often need-
ed to get from code created by means of
a word-processing program to code that
readily drives a printer or a typesetting
machine. An algorithm that justifies text
(fills the full width of each line of type)
must determine how many words will fit
in a line, how much space should be in-
serted between the words and whether a
line would be improved by dividing and
hyphenating a word. The algorithm may
also take actions to avoid visual defects
such as a line with wide interword spac-
ing followed by a line that is very com-
pact. Positioning each line on the page is
further complicated by the placement of
headings, footnotes, illustrations, tables
and so on. Mathematical formulas have
their own typographic rules.

TEX and similar programs are prim-
itive with respect to another aspect of
word processing: the user interface. The
high-resolution display screens becom-
ing available are now making it pos-
sible for the computer to display to
the user a fair approximation of the
pages it will print, including the place-
ment of each item and the typeface to
be employed. This suggests that the user
should not have to type special com-
mand sequences but might instead ma-
nipulate page geography directly on the
screen by means of the computer key-
board and a pointing device such as
a “mouse.” The resulting interface be-
tween the computer and the user would
then fall into the class of interfaces
known as wysiwYG, which stands for

~ “What you see is what you get.”

: I_t is worth noting that programs for

manipulating text are called differ-
ent things by different professions. Pro-
grammers call them text editors, but
in business and-publishing they are re-
ferred to as word processors; in the lat-
ter fields an editor is a person who works
to improve the quality of text. Comput-
er software is emerging to aid in this

The chickens are ready to eat.
S
VP
AP
NP VP
N
Det Noun Verb Adj Comp P
| T
The chickens are ready to Verb
eat
S
VP
AP
NP S
N Lo
Det Noun Aux Adj NP VP
IR .
The chickens are ready Det Noun Verb NP
|| |
The chickens eat
S
VP
AP
NP S
Det Noun Aux Adj VP
7N
The chickens are ready NP Verb NP
|
eat Det Noun
[
The chickens

DEEP-STRUCTURAL AMBIGUITY arises when a sentence has a single apparent structure
but nonetheless has more than one possible meaning. In this example the sentence is “The
chickens are ready to eat.” Its grammatical structure (top) leaves the role of the chickens am-
biguous: in one interpretation they will eat; in the other they will be eaten. Deep-structure trees
make the chickéns’ role explicit: they are the subject of the sentence (middle), in which case
their food is undetermined, or they are the object (bottom), and their eaters are undetermined.

135

more substantive aspect of editing. It
deals with neither the visual format of
language nor the conceptual content but
with spelling, grammar and style. It in-
cludes two kinds of programs: mecha-
nized reference works and.mechanized
correctness aids.

An example of a. mechanized refer-
ence work is a thesaurus program de-
signed so that when the writer desig-
nates a word, a list of synonyms appears
on the display screen. In advanced sys-
tems the thesaurus is fully integrated
into the word-processing program. The
writer positions a marker to indicate the
word to be replaced. The thesaurus is
then invoked; it displays the alterna-
tives in a “window” on the screen. The
writer positions the marker on one of
the alternatives, which automatically
replaces the rejected word.

The design. of such a program in-
volves both linguistic and computa-
tional issues. A linguistic issue is that
the mechanism for looking up a word
should be flexible enough to accept vari-
ant forms. For example, the store of in-
formation pertaining to “endow” should
be accessible to queries about *‘en-
dowed,” “endowing,” “endows” and
even “unendowed” or “endowment.”
Recognizing the common root in such
words calls for a morphological analy-
sis, which can be done by techniques
developed in the course of work on
machine translation. Computational is-
sues include devising methods for stor-
ing and searching through a thesaurus
or a dictionary, which must be fairly
large to be useful.

A correctness aid deals with spelling,
grammar and even elements of style.
The simplest such programs attempt to
match each word in a text with an en-
try in a stored dictionary. Words that
have no match are flagged as possible
misspellings. Other programs look for
common grammatical errors or stylis-
tic infelicities. For example, the Writ-
er’'s Workbench software developed at
AT&T Bell Laboratories includes pro-
grams that search for repeated words,
such as “the the” (a common typing mis-
take), for incorrect punctuation such as
“2.” and for wordy phrases such as “at
this point in time.” A different correct-
ness aid calls attention to “pompous
phrases” such as “exhibit a tendency”
and “arrive at a decision” and suggests
simpler replacements such as “tend”
and “decide.” Still another correctness
aid searches for gender-specific terms
such as “mailman” and “chairman” and
suggests replacements such as “mail
carrier” and “chairperson.”

In addition to searching a text for
particular strings of characters, some
correctness-aid programs do statisti-
cal analyses. By calculating the aver-
age length of sentences, the length of
words and similar quantities, they com-
pute a “readability index.” Passages that
score poorly can be brought to the writ-
er’s attention. No program is yet able
to make a comprehensive grammatical
analysis of a text, but an experimen-
tal system called Epistle, developed
at the International Business Machines
Corporation, makes some grammatical
judgments. It employs a grammar of

David wants to marry a Norwegian...
Ix Norwegian(x) A Want(David,[Marry(David,x)])
Want(David,[3x Norwegian(x) A Marry(David,x)])

SEMANTIC AMBIGUITY arises when a phrase can play different roles in the meaning of a
sentence, Here the roles of the phrase “a Norwegian” become explicit when the sentence “David
wants to marry a Norwegian” is “translated” into a logical form based on the notation called
predicate calculus. According to one interpretation, the speaker of the sentence has a partic-
ular person in mind and has chosen nationality as a way to specify who. Hence the sentence
means: There exists (3) an x such that x is Norwegian and (A) x is the person David wants to
-marry. According to another interpretation, neither David nor the speaker has any particu-
lar person in mind, David might be going to Norway hoping to meet someone marriageable.

She dropped the piate on the table and broke it.
She dropped the plate on the table and broke [the plate].
She dropped the plate on the table and broke - jthe:table}..

PRAGMATIC AMBIGUITY arises when a sentence is given more than one possible meaning
by a word such as the pronoun “it.” Suppose a computer is given the sentence shown in the illus-
tration, If the computer has access to stored knowledge of the grammar of English sentences
but lacks access to commonsense knowledge of the properties of tables and plates, the com-
puter could infer with equal validity that the table was broken or that the plate was broken.

136

,‘\q'
-

400 rules and a dictionary of 130,000
words. As with all software that tries to
parse text without dealing with what the
text means, there are many sentences
that cannot be analyzed correctly.

Is there software that really deals with
meaning—software that exhibits the
kind of reasoning a person would use
in carrying out linguistic tasks such as
translating; summarizing or answering a
question? Such software has been the
goal of research projects in artificial
intelligence since the mid-1960’s, when
the necessary computer hardware and
programming techniques began to ap-
pear even as the impracticability of
machine translation was becoming ap- °
parent. There are many applications
in which the software would be use-
ful. They include programs that accept
natural-language commands, programs
for information retrieval, programs that
summarize text and programs that ac-
quire language-based knowledge for ex-
pert systems.

No existing software deals with mean-
ing over a significant subset of English;
each experimental program is based on
finding a simplified version of language
and meaning and testing what can be
done within its confines. Some inves-
tigators see no fundamental barrier to
writing programs with a full under-
standing of natural language. Others ar-
gue that computerized understanding of
language is impossible. In order to fol-
low the arguments it is important to
examine the basics of how a language-
understanding program has to work.

A language-understanding program
needs several components, correspond-
ing to the various levels at which lan-
guage is analyzed [see illustrations on
pages 138-144). Most programs deal with
written language; hence the analysis of
sound waves is bypassed and the first
level of analysis is morphological. The
program applies rules that decompose a
word into its root, or basic form, and
inflections such as the endings -s and
-ing. The rules correspond in large part
to the spelling rules children are taught
in elementary school. Children learn,
for example, that the root of “baking”
is “bake,” whereas the root of “bark-
ing” is “bark.” An exception list han-
dles words to which the rules do not
apply, such as forms of the verb “be.”
Other rules associate inflections with
“features” of words. For example, “am
going” is a progressive verb: it signals
an act in progress.

or each root that emerges from the

morphological analysis a dictionary
yields the set of lexical categories to
which the root belongs. This is the sec-
ond level of analysis carried out by the
computer. Some roots (such as “the™)
have only one lexical category; others
have several. “Dark” can be a noun or

a \inset

This is a sample of a {\italic justified} piece of text, which contains {\eightpo
1t includes foreign words such as \lquote pe\~ na\rquote—which is Spanish
which can be baffling, and includes one \hskip 1.3in wide space.

int small letters {\bold and }} {bigFont big ones}.
—and foreign letters like \alpha\ and \aleph,

b .. .[61110100[01100101]01110010] 01110011 00000000 00100111] 00101101 [11010011]00001000[01100001] 01101110]01100100] 00000000

t e r s

NEW FONT
ENTITY CODE

X-POSI-

TION TION MENT

Y-POS!- X-INCRE-

NEW
ENTITY

a n d

[00110100]00110001]10110110] 00101101] 01100010] 01101001 { 01100111 [00100000]01101111]01101110[01100101]01101011{ 00101110}

one

FONT X-POSI- Y-POSI X-INCRE- b i g SPACE [¢] n e s .
CODE TION TION MENT -
[00000000]00000001] 10101111] 10110110] 00101100 01001001] 01110100] 00100000]01101001] . ..
NEW FONT XPOS- Y-POSI XINCRE- | t SPACE i
ENTITY CODE TION TION MENT
c This is a sample of a justified piece of text, which contains small letters and

- b|g ONEeSs. 1t includes foreign words such as “pefia”—which is Span-
ish—and fareign. letters like a and . which can be baffling. and includes
wide space.

WORD PROCESSING, that is, the computer-aided preparation and
editing of text, requires several representations of the text, because
the format best for interactions between the software and its user is
not efficient for sending instructions to a printing machine, nor can it
efficiently give a preview of the result of the printing. In the typeset-
ting language TEX the user’s typed input (a) includes commands that
specify nonstandard characters, change the style of type, set margins

an adjective; “bloom” canbe anounora
verb. In some instances the morpholog-
ical analysis limits the possibilities. (In
its common usages “bloom” can be a
noun or a verb, but “blooming” is only
a verb.) The output of the morpholog-
ical and lexical analysis is thus a se-
quence of the words in a sentence, with
each word carrying a quantity of dic-
tionary and feature information. This
output serves in turn as the input to the
third component of the program, the
parser, or syntactic-analysis component,
which applies rules of grammar to de-
termine the structure of the sentence.

Two distinct problems arise in design-
ing an adequate parser. The first prob-
lem is the specification of a precise set of
rules—a grammar—that determines the
set of possible sentence structures in a
language. Over the past 30 years much
work in theoretical linguistics has been
directed toward devising formal linguis-
tic systems: constructions in which the
syntactic rules of a language are stat-
ed so precisely that a computer could
employ them to analyze the language.
The generative transformational gram-
mars invented by Noam Chomsky of
the Massachusetts Institute of Technol-
ogy were the first comprehensive at-
tempt; they specify the syntax of a lan-
guage by means of a set of rules whose
mechanical application generates all al-
lowable structures.

The second problem is that of the
parsing itself. It is not always possible to
tell, when a part of a sentence is encoun-

138

tered, just what role it plays in the sen-
tence or whether the words in it go to-
gether. Take the sentence “Roses will
be blooming in the dark gardens we
abandoned long ago.” The words “in
the dark” might be interpreted as a com-
plete phrase; after all, they are gram-
matically well formed and they make
sense. But the phrase cannot form a co-
herent unit in a complete analysis of the
sentence because it forces “Roses will be
blooming in the dark” to be interpreted

Spoken
language

and so.on. Such commands are distinguished by a backslash (\). The
TEX software “compiles” the input, producing computer code that will
drive a printing machine (5). To that end the code is divided into “en-
tities,” each of which specifies the typeface and the starting posi-
tion for a sequence of words. Coded “X increments” space out the
words to fill the distance between margins on the printed page; thus
they “justify” lines of type. The printed page (c) shows the result.

as a sentence and therefore leaves *“gar-
dens we abandoned long ago” without a
role to play.

Parsers adopt various strategies for
exploring the multiple ways phrases can
be put together. Some work from the top
down, trying from the outset to find pos-
sible sentences; others work from the
bottom up, trying local word combi-
nations. Some backtrack to explore al-
ternatives in depth if a given possibil-
ity fails; others use parallel processing

Written
language

Phonemes

= Morphemei

Phonological
rules

Morphological Item
rules

dictionary

COMPUTERIZED UNDERSTANDING OF LANGUAGE requires the computer to draw
on several types of stored data (white boxes) and perform several levels of analysis (colored
boxes). I the language is spoken, the first analysis is phonological (1): the computer analyzes
sound waves. If the language is written, the first analysis is morphological (2): the computer de~
composes each word into its root, or basic form, and inflections (for example -ing). Next is Jexi-

4

My

to keep track of a number of alterna-
tives simultaneously. Some make use of
formalisms (such as transformational
grammar) that were developed by lin-
guists. Others make use of newer for-
malisms designed with computers in
mind. The latter formalisms are better
suited to the implementation of parsing
procedures. For example, “augmented-
transition networks” express the struc-
ture of sentences and phrases as an ex-
plicit sequence of “transitions” to be fol-
lowed by a machine. “Lexical-function
grammars” create a “functional struc-
ture” in which grammatical functions
such as head, subject and object are ex-
plicitly tied to the words and phrases
that serve those functions.

Although no formal grammar suc-
cessfully deals with all the grammati-
cal problems of any natural language,
existing grammars and parsers can han-
dle well over 90 percent of all sentences.
This is not entirely to the good. A given
sentence may have hundreds or even
thousands of possible syntactic analy-
ses. Most of them have no plausible
meaning. People are not aware of con-
sidering and rejecting such possibilities,
but parsing programs are swamped by
meaningless alternatives.

he output of a parsing program be-

comes the input to the fourth com-
ponent of a language-understanding
program: a semantic analyzer, which
translates the syntactic form of a sen-
tence into a “logical” form. The point is
to put the linguistic expressions into a
form that makes it possible for the com-
puter to apply reasoning procedures and
draw inferences. Here again there are
competing theories about what repre-
sentation is most appropriate. As with
parsing, the key issues.are effectiveness
and efficiency.

Effectiveness depends on finding the
appropriate formal structures to en-
code the meaning of linguistic expres-
sions. One possibility is predicate calcu-
lus, which employs the quantifiers ¥ to
mean “all” and 3 to mean “there ex-
ists.” In predicate calculus “Roses will
be blooming...” is equivalent to the as-
sertion “There exists something that isa
rose and that is blooming....” This en-
tails a difficulty. Is one rose adequate to
represent the meaning of “roses will be
blooming,” or would it be better to spec-
ify two or more? How can the computer
decide? The dilemma is worsened if a
sentence includes a mass noun such as
“water” in “Water will be flowing....”
One cannot itemize water at all. In de-
signing a formal structure for the mean-
ing of linguistic expressions many simi-
lar problems arise from the inherent
vagueness of language.

Efficiency must also be considered,
because the computer will employ the
logical form of a sentence to draw infer-
ences that in turn serve both the analysis
of the meaning of the sentence and the
formulation of a .response to it. Some
formalisms, such as predicate calculus,
are not directly amenable to efficient
computation, but other, more *“proce-
dural” representations have also been
devised. Consider the effort to answer
the question “Are there flowers in the
gardens we abandoned long ago?” The
computer needs to know that roses are
flowers. This knowledge could be repre-
sented by a formula in predicate calcu-
lus amounting to the assertion “Every-
thing that is a rose is a flower.” The
computer could then apply techniques
developed for mechanical theorem-
proving to make the needed deduction.
A different approach would be to give
certain inferences a privileged compu-
tational status. For example, basic clas-

sificational deductions could be repre-
sented directly in data structures [see
bottom illustration on page 144). Such de-
ductions are required constantly for rea-
soning about the ordinary properties of
objects. Other types of fact (for exam-
ple that flowers need water in order to
grow) could then be represented in a
form closer to predicate calculus. The
computer could draw on both to make
inferences (for example that if roses do
not get water, they will not grow).

A good deal of research has gone
into the design of “representation lan-
guages” that provide for the effective
and efficient encoding of meaning. The
greatest difficulty lies in the nature of
human commonsense reasoning. Most
of what a person knows cannot be for-
mulated in all-or-nothing logical rules;
it lies instead in “normal expectations.”
If one asks, “Is there dirt in the garden?”
the answer is almost certainly yes. The
yes, however, cannot be a logical infer-
ence; some gardens are hydroponic, and
the plants there grow in water. A person
tends to rely on normal expectations
without thinking of exceptions unless
they are relevant. But little progress
has been made toward formalizing the
concept of “relevance” and the way it
shapes the background of expectations
brought to bear in the understanding of
linguistic expressions.

The final stage of analysis in a lan-
guage-understanding program is
pragmatic analysis: the analysis of con-
text. Every sentence is embedded in a
setting: it comes from a particular
speaker at a particular time and it refers,
at least implicitly, to a particular body
of understanding. Some of the embed-
ding is straightforward: the pronoun “I”
refers to the speaker; the adverb “now”
refers to the moment at which the sen-

b e z Syntactic '-»_",'_ 2k : Representation | _' ST e Representation
o Syn) structures Samantic structures < Pragmatics structures
i 8 ot 2 t Joi e
Grammatical Definition Semantic Pragmatic Deductive Inferential
rules dictionary rules rules rules rules

cal analysis (3), in which the computer assigns words to their lexical
category (noun, for instance) and identifies “features” such as plu-
rais. Then comes syntactic analysis, or parsing (4): the application of
rules of grammar to yield the structure of the sentence. After that
comes semantic analysis (5). Here the sentence is converted into a

form that makes it amenable to inference-drawing. The final stage
is pragmatic (6): it makes explicit the context of the sentence, such
as the relation between the time at which it is spoken and the time
to which it refers. The computer is now in a position to draw infer-
ences (7), perhaps in preparation for responding to the sentence.

139

tence is uttered. Yet even these can be
problematic: consider the use of “now”
in a letter 1 write today expecting you
to read it three or four days hence.
Still, fairly uncomplicated programs can
draw the right conclusion most of the
time. Other embedding is more com-
plex. The pronoun “we” is an example.
“We” might refer to the speaker and the
hearer or to the speaker and some third
party. Which of these it is (and who the
third party might be) is not explicit and
in fact is a common source of misunder-
standing when people converse.

Still other types of embedding are not
signaled by a troublesome word such
as “we.” The sentence “Roses will be
blooming...” presupposes the identifi-
cation of some future moment when the
roses will indeed be in bloom. Thus the
sentence might have followed the sen-
tence “What will it be like when we get
home?” or “Summer is fast upon us.”
Similarly, the noun phrase “the dark
gardens we abandoned long ago” has a
context-dependent meaning. There may
be only one instance of gardens in which
we have been together; there may be
more than one. The sentence presup-
poses a body of knowledge from which
the gardens are identifiable. The point
is that a phrase beginning with “the”
rarely specifies fully the object to which
it refers.

One approach to such phrases has
been to encode knowledge of the world
in a form the program can use to make
inferences. For example, in the sentence
«] went to a restaurant and the waiter
was rude” one can infer that “the wait-
er” refers to the person who served the
speaker’s meal if one’s knowledge in-
cludes a script, so to speak, of the typical

events attending a meal in a restaurant.
(A particular waiter or waitress serves
any given customer.) In more complex
cases an analysis of the speaker’s goals
and strategies can help. If one hears
“My math exam is tomorrow, where’s
the book?” one can assume that the
speaker intends to study and that “the
book” means the mathematics text em-
ployed in a course the speaker is taking.
The approach is hampered by the same
difficulty that besets the representation
of meaning: the difficulty of formalizing
the commonsense background that de-
termines which scripts, goals and strate-
gies are relevant and how they interact.
The programs written so far work only
in highly artificial and limited realms,
and it is not clear how far such programs
can be extended.

Even more problematic are the effects
of context on the meaning of words.
Suppose that in coming to grips with
“the dark gardens we abandoned long
ago” one tries to apply a particular
meaning to “dark.” Which should it be?
The “dark” of “those dark days of tribu-
lation” or that of “How dark it is with
the lights off” or that of “dark colors™?
Although a kernel of similarity unites
the uses of a word, its full meaning is
determined by how it is used and by the
prior understanding the speaker expects
of the hearer. “The dark gardens” may
have a quite specific meaning for the
person addressed; for the rest of us it is
slightly mysterious.

Aﬁrst it might seem possible to distin-
guish “literal” uses of language
from those that are more metaphorical
or poetical. Computer programs faced
with exclusively literal language could

then be freed from contextual dilem-
mas. The problem is that metaphor and
“poetic meaning” are not limited to the
pages of literature. Everyday language
is pervaded by unconscious metaphor,
as when one says, “I lost two hours
trying to get my idea across.” Virtual-
ly every word has an open-ended field
of meanings that shade gradually from
those that seem utterly literal to those
that are clearly metaphorical.

The limitations on the formalization
of contextual meaning make it impossi-
ble at present—and conceivably forev-
er—to design computer programs that
come close to full mimicry of human
language understanding. The only pro-
grams in practical use today that at-
tempt even limited understanding are
natural-language “front ends” that en-
able the user of a program to request
information by asking questions in En-
glish. The program responds with En-
glish sentences or with a display of data.

A program called SHRDLU is an early
example. Developed in the late 1960s, it
enables a person to communicate with a
computer in English about a simulat-
ed world of blocks on a tabletop. The
program analyzes requests, commands
and statements made by the user and
responds with appropriate words or
with actions performed in the simulat-
ed scene. SHRDLU succeeded in part be-
cause its world of conversation is limit-
ed to a simple and specialized domain:
the blocks and a few.actions that can be
taken with them.

Some more recent front-end inter-
faces have been designed with practical
applications in mind. A person wanting
access to information stored in the com-
puter types natural-language sentences

Word Root

Roses will be blooming
in the dark gardens
we abandoned long ago.

SUCCESSION OF ANALYSES done by a hypothetical computer
program suggests how software that understands language works. In
this illustration the program has been given the sentence “Roses will
be blooming in the dark gardens we abandoned long ago.” The first
analyses (morphological and lexical) yield a list of the words in the

142

Features

Lexical categories

sentence, with their roots, their lexical categories and thele foatures,

“Blooming,” for instance, is a progressive verbs it signifies an act in'
progress. The data serve as input for the syntactic level of analysist
the parsing of the sentence. Here the surface, or grammatienly

ture of “Roses will be blooming...” is put in the form:of a tres. Pres ;

sirnos

s

that the computer interprets as queries.
The range of the questioning is circum-
scribed by the range of the data from
which answers are formulated; in this
way words can be given precise mean-
ing. In a data base on automobiles, for
example, “dark” can be defined as the
colors “black” and “navy” and nothing
more than that. The contextual meaning
is there, but it is predetermined by the
builder of the system, and the user is
expected to learn it.

The main advantage of a natural-lan-
guage front end is that it presents a low
initial barrier to potential users. Some-
one invited to pose a question in English
is usually willing to try, and if the com-
puter proves unable to handle the spe-
cific form of the question, the user is
probably willing to modify the word-
ing until it works. Over time the user
will learn the constraints imposed by
the system. In contrast, a person who
must learn a specialized language in
order to formulate a question may well
feel that an inordinate amount of work
is being demanded.

I want finally to look at a rather new
type of system called a coordinator.
In brief it replaces standard electronic
mail with a process that aids the genera-
tion of messages and monitors the prog-
ress of the resulting conversations. Co-
ordinators are based on speech-act the-
ory, which asserts that every utterance
falls into one of a small number of cate-
gories. Some speech acts are statements:

are declarative: “You’re fired.” (Declar-
atives differ from statements in that
they take effect by virtue of having
been said.)

The classification of speech acts is
useful because acts in the various cate-
gories do not occur at random. Each

speech act has “felicity conditions” un-
der which it is an appropriate thing to
say and “conditions of satisfaction” un-
der which it is fulfilled. For example, a
request or a commitment carries with it,
either implicitly or explicitly, a time by
which it should be satisfied. Moreover,

VP

NP

Aux Aux

Noun Verb

Prep Det Adj

Roses will be blooming in the dark gardens we abandoned iong ago

NP
I
S
VP
NP
AdvP
Noun Pron Verb Adv Adv

sumably the computer discards numerous incorrect trees. For exam-
ple, it discards a tree in which “Roses will be blooming in the dark” is
construed as a sentence. The deep structure of “Roses will be bloem-
ing...” is put in the form of a functional-structure diagram. There the
relations between the parts of a sentence become explicit; they are

- “It’sraining.” Some are expressive: “I'm NP
, sorry 1 stepped on your toe.” Some are Head: Roses
) requests: “Please take her the package” Number: Plural
or “What is your name?” Some are com- s ge;.s‘?:‘?.wl(d
mitments: “I'll do it tomorrow:” Some Slinie.No
Head: blooming
Subject: -—]
Auxiliaries: wiil be
Tense: Future Progressive.
Modifiers:) NP
Head: we
Number: Plural
Person: First
NP Definite: Yes
Head: gardens i
PP Determiner: the
4 Head: in Number: Plural s
Object: e Person: Third
2 Definite: Yes Head: abandoned
. Syntactic ~— Modifiers: dark (S)tépxt: —+
—_—> i Qualifiers: o ject: —
analyse Tense: Past
Modifiers: [
» AP
Head: ago
Modifiers: long
¥ - _J

shown by strings between boxes. Some relations were explicit in the
surface structure (for example that “roses” is the subject of “blooms
ing”). Others were not (for example that “gardens” Is the object of
“gbandoned”). The syntactic analysis is supplied to the final stages
of the program, which appear in the top illustration on the next page

143

- quantified variable _

~
[}

possibly unspecified
identity determined
5 Axyz,to,ty,t2 [Rose(x) 6 by context 7
A Garden(y) z = Sfeaker of th: ezent:nce
A Dark(y) plus unspecified others,
—> Sao;'t:'ayggc ——> AAbandon(z,y,tz) ——34 Pa':glmy;? - possibly hearer ——>i Reasoning
A Bloom(x,y,t) to = moment of utterance of :
A After (to,t) the context
A LongAfter(tz,to)] ty = unspecified future moment
determined by context
t = past moment described
as "long ago”’

ANALYSES CONCLUDE with the conversion of the syntactic struc-
ture of “Roses will be blooming...” into a form from which the com-
puter can draw inferences. In this example the conversion is based
on predicate calculus; thus the semantic-analysis module of the hy-
pothetical software represents the logical content of “Roses will be
blooming...” by symbols that can be translated as “x is a rose and yis
a garden and y is dark....” Finally, the pragmatic-analysis module

specifies what is kmown about the variables x, y, z, I, £1 and ¢, The
variable x, for example, is “quantified”: it declares the existence of
something instead of identifying a particular object. In other words,
the computer takes “roses” as referring to roses in general, not to par-
ticular roses. Hence roses is not a “definite” noun. (That decision was
made in the course of semantic analysis.) On-the other hand, z re-
mains ambiguous because it stands for the ambiguous pronoun “we.”

each speech act is part of a conversa-
tion that follows a regular pattern. The
regularity is crucial for successful com-
munication.

As with every aspect of language, the
full understanding of any given speech
act-is always enmeshed in the unarticu-
lated background expectations of the
speaker and the hearer. The speech act
“I’ll be here tomorrow” might be a pre-
diction or a promise, and “Do you play
tennis?”’ might be a question or an invi-
tation. In spoken conversation intona-
tion and stress play a prominent part in
establishing such meaning.

Coordinator systems deal with the
speech acts embodied in messages by
specifying what needs to be done and
when. The system does not itself at-
tempt to analyze the linguistic content
of messages. Instead the word-process-
ing software at the sender’s end asks the
sender to make explicit the speech-act
content of each message. A person may
write “F'll be happy to get you that re-
port” in the message itself but must add
(with a few special keystrokes) that the

message is an ACCEPT of a particular RE-
QUEST. The computer system can then
keep track of messages and their inter-
connections. In particular the system
can monitor the completion of conver-
sations, calling the users’ attention to
cases in which something immediate is
pending or in which an agreed-on time
for satisfaction has not been met.
From a broad -perspective, coordi-
nators are just one member of a large
family of software that gives users a
structured medium in which language
is augmented by explicit indications of
how things fit together. Another type of
software in this family provides tools
for outlining and cross-indexing docu-
ments. Still another ‘type is a comput-
erized bulletin board that enables users
to store and receive messages not ad-
dressed to a specific receiver. The mes-
sages are “posted” with additional struc-
ture that indicates their content and
helps interested readers to find them.
The most obvious prediction about
the future of computer software deal-
ing with language is that the decreas-

ing cost of hardware will make applica-
tions that are possible but impractical
today -available quite widely in the fu-
ture. Yet software that mimics the full
human understanding of language is
simply not in prospect.:Some specific
trends can be noted.

The first is that spoken language will
get more emphasis. To be sure, the
computerized understanding of spoken
language presents all the difficulties of
written language and more. Merely sep-
arating an utterance into its component
words can vex a computer; thus hopes
for a “voice typewriter” that types text
from dictation are just as dim as hopes
for high-quality machine translation
and language-understanding. On the
other hand, many useful devices do
not require the analysis of connected
speech. Existing systems that can identi-
fy a spoken word or phrase from a fixed
vocabulary of a few hundred items will
improve the interface between users and
machines; the recent emergence of in-
expensive integrated-circuit chips that

flower

stamen

petal

plant

Mcintosh

is-a is-a

apple

fruit leaf

orange

pippin

SEMANTIC NETWORK is a specialized form of stored data that
represents logical relations so that certain types of inference can be
drawn -efficiently by a computer. Here a simple tracing of links in

144

the network (color) has yielded the inference that a pippin is a fruit
and that a rose has petals. Facts not readily represented by a network
can be represented in other ways, for example by predicate calculus.

process acoustic signals will facilitate
the trend. Speech synthesizers that gen-
erate understandable = utterances (al-
though not in a natural-sounding voice)
will also play an increasing role. Im-
proved speech “compression” and en-
coding techniques will make acoustic

messages and acoustic annotation of .

computer files commonplace.

A second trend in software dealing
with language is that constraints on lin-
guistic domain will be handled with in-
creasing care and theoretical .analysis.

At several points in this article:-1 have.

noted instances in which computers deal
with meaning in an acceptable way be-
cause they operate in a limited domain
of possible meanings. People using such
software quickly recognize that the
computer does not understand the full
range of language, but the subset avail-
able is nonetheless a good basis for com-
munication. Much of the commercial

success of future software that deals-

with language will depend on .the dis-
covery of domains in which constraints
on what sentences can mean still leave
the user a broad range of language.

A third trend lies in the development
of systems that combine the natural and
the formal. Often it is taken for granted
that natural language is the best way for
people to communicate with computers.
Pians for a “fifth generation™ of intelli-
gent computers are based on this propo-
sition. It is not at all evident, however,
that. the proposition is valid. In some
cases even the fullest understanding of
natural language is not as expressive as a
picture. And in many cases a partial un-
derstanding of natural language proves
to be less usable than a well-designed
formal interface. Consider the work
with natural-language front ends. Here
natural language promotes the initial
acceptance of the system, but after that
the users often move toward stylized
forms of language they find they can
employ with confidence, that is, with-
out worrying about whether or not the
machine will interpret their statements
correctly.

The most successful current systems

facilitate this transition. Some systems |

(including coordinators) mix the natural
and the formal: the user is taught to rec-
ognize formal properties of utterances
and include them explicitly in messages.
Thus the computer handles formal
structures, while people handle tasks in
which context is important and precise
rules cannot be applied. Other systems
incorporate a highly-structured query
system, so that as the user gains experi-
ence the artificial forms are seen.to save
time and trouble. In each case the com-
puter is not assigned the difficult and
open-ended tasks of linguistic analysts;
it serves instead as a structured linguis-
tic medium. That is perhaps the most
useful way the computer. will deal with
natural language.

Chivas Regal ¢ 12 Years Old Worldwide # Blended Scotch Whisky ¢ 86 Proof
© 1984 General Wine & Spirits Co., N.Y.

145

